메뉴 건너뛰기




Volumn , Issue , 2011, Pages 256-265

Probabilistic theorem proving

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; PROBABILITY;

EID: 80053152557     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (161)

References (40)
  • 2
    • 38149014645 scopus 로고    scopus 로고
    • The model evolution calculus as a first-order DPLL method
    • P. Baumgartner and C. Tinelli. The model evolution calculus as a first-order DPLL method. Artif. Intell., 172(4-5):591-632, 2008.
    • (2008) Artif. Intell. , vol.172 , Issue.4-5 , pp. 591-632
    • Baumgartner, P.1    Tinelli, C.2
  • 3
    • 85158106823 scopus 로고    scopus 로고
    • Counting models using connected components
    • R. J. Bayardo, Jr. and J. D. Pehoushek. Counting models using connected components. In AAAI, pages 157-162, 2000.
    • (2000) AAAI , pp. 157-162
    • Bayardo Jr., R.J.1    Pehoushek, J.D.2
  • 4
    • 38649102485 scopus 로고    scopus 로고
    • On probabilistic inference by weighted model counting
    • M. Chavira and A. Darwiche. On probabilistic inference by weighted model counting. Artif. Intell., 172(6-7):772-799, 2008.
    • (2008) Artif. Intell. , vol.172 , Issue.6-7 , pp. 772-799
    • Chavira, M.1    Darwiche, A.2
  • 5
    • 0035250750 scopus 로고    scopus 로고
    • Recursive conditioning
    • DOI 10.1016/S0004-3702(00)00069-2
    • A. Darwiche. Recursive conditioning. Artif. Intell., 126:5-41, 2001. (Pubitemid 32196230)
    • (2001) Artificial Intelligence , vol.126 , Issue.1-2 , pp. 5-41
    • Darwiche, A.1
  • 6
    • 2442696729 scopus 로고    scopus 로고
    • A logical approach to factoring belief networks
    • Adnan Darwiche. A logical approach to factoring belief networks. In KR, pages 409-420, 2002.
    • (2002) KR , pp. 409-420
    • Darwiche, A.1
  • 7
    • 84919401135 scopus 로고
    • A machine program for theorem proving
    • M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. CACM, 5:394-397, 1962.
    • (1962) CACM , vol.5 , pp. 394-397
    • Davis, M.1    Logemann, G.2    Loveland, D.3
  • 8
    • 84881072062 scopus 로고
    • A computing procedure for quantification theory
    • M. Davis and H. Putnam. A computing procedure for quantification theory. JACM, 7(3), 1960.
    • (1960) JACM , vol.7 , Issue.3
    • Davis, M.1    Putnam, H.2
  • 9
    • 84880905111 scopus 로고    scopus 로고
    • Problog: A probabilistic prolog and its application in link discovery
    • L. De Raedt, A. Kimmig, and H. Toivonen. Problog: A probabilistic prolog and its application in link discovery. In IJCAI, pages 2462-2467, 2007.
    • (2007) IJCAI , pp. 2462-2467
    • De Raedt, L.1    Kimmig, A.2    Toivonen, H.3
  • 11
    • 0033188982 scopus 로고    scopus 로고
    • Bucket elimination: A unifying framework for reasoning
    • DOI 10.1016/S0004-3702(99)00059-4
    • R. Dechter. Bucket elimination: A unifying framework for reasoning. Artif. Intell., 113:41-85, 1999. (Pubitemid 30542742)
    • (1999) Artificial Intelligence , vol.113 , Issue.1 , pp. 41-85
    • Dechter, R.1
  • 12
    • 33847283947 scopus 로고    scopus 로고
    • AND/OR search spaces for graphical models
    • DOI 10.1016/j.artint.2006.11.003, PII S000437020600138X
    • R. Dechter and R. Mateescu. AND/OR search spaces for graphical models. Artif. Intell., 171(2-3):73-106, 2007. (Pubitemid 46328845)
    • (2007) Artificial Intelligence , vol.171 , Issue.2-3 , pp. 73-106
    • Dechter, R.1    Mateescu, R.2
  • 14
    • 79952384509 scopus 로고    scopus 로고
    • Markov logic: An interface layer for artificial intelligence
    • P. Domingos and D. Lowd. Markov Logic: An Interface Layer for Artificial Intelligence. Morgan & Claypool, 2009.
    • (2009) Morgan & Claypool
    • Domingos, P.1    Lowd, D.2
  • 17
    • 80053147650 scopus 로고    scopus 로고
    • Formula-based probabilistic inference
    • V. Gogate and P. Domingos. Formula-based probabilistic inference. In UAI, pages 210-219, 2010.
    • (2010) UAI , pp. 210-219
    • Gogate, V.1    Domingos, P.2
  • 18
    • 78650935812 scopus 로고    scopus 로고
    • SampleSearch: Importance sampling in presence of determinism
    • Vibhav Gogate and Rina Dechter. SampleSearch: Importance Sampling in presence of Determinism. Artif. Intell., 175(2):694-729, 2011.
    • (2011) Artif. Intell. , vol.175 , Issue.2 , pp. 694-729
    • Gogate, V.1    Dechter, R.2
  • 19
    • 0025535649 scopus 로고
    • An analysis of first-order logics of probability
    • J. Halpern. An analysis of first-order logics of probability. Artif. Intell., 46:311-350, 1990.
    • (1990) Artif. Intell. , vol.46 , pp. 311-350
    • Halpern, J.1
  • 20
    • 85161996823 scopus 로고    scopus 로고
    • Lifted inference from the other side: The tractable features
    • A. Jha, V. Gogate, A. Meliou, and D. Suciu. Lifted inference from the other side: The tractable features. In NIPS, pages 973-981, 2010.
    • (2010) NIPS , pp. 973-981
    • Jha, A.1    Gogate, V.2    Meliou, A.3    Suciu, D.4
  • 21
    • 77956540465 scopus 로고    scopus 로고
    • Counting belief propagation
    • K. Kersting, B. Ahmadi, and S. Natarajan. Counting Belief Propagation. In UAI, pages 277-284, 2009.
    • (2009) UAI , pp. 277-284
    • Kersting, K.1    Ahmadi, B.2    Natarajan, S.3
  • 22
    • 78049396348 scopus 로고    scopus 로고
    • Constraint processing in lifted probabilistic inference
    • J. Kisynski and D. Poole. Constraint processing in lifted probabilistic inference. In UAI, pages 293-302, 2009.
    • (2009) UAI , pp. 293-302
    • Kisynski, J.1    Poole, D.2
  • 26
    • 70350029358 scopus 로고    scopus 로고
    • Probabilistic modelling, inference and learning using logical theories
    • K. S. Ng, J. W. Lloyd, and W. T. Uther. Probabilistic modelling, inference and learning using logical theories. AMAI Journal, 54(1-3):159-205, 2008.
    • (2008) AMAI Journal , vol.54 , Issue.1-3 , pp. 159-205
    • Ng, K.S.1    Lloyd, J.W.2    Uther, W.T.3
  • 27
    • 0022659563 scopus 로고
    • Probabilistic logic
    • N. Nilsson. Probabilistic logic. Artif. Intell., 28:71-87, 1986.
    • (1986) Artif. Intell. , vol.28 , pp. 71-87
    • Nilsson, N.1
  • 28
    • 0036928389 scopus 로고    scopus 로고
    • Using weighted MAX-SAT engines to solve MPE
    • James D. Park. Using weighted MAX-SAT engines to solve MPE. In AAAI, pages 682-687, 2002.
    • (2002) AAAI , pp. 682-687
    • Park, J.D.1
  • 29
    • 84880831450 scopus 로고    scopus 로고
    • First-order probabilistic inference
    • D. Poole. First-order probabilistic inference. In IJCAI, pages 985-991, 2003.
    • (2003) IJCAI , pp. 985-991
    • Poole, D.1
  • 30
    • 33750705605 scopus 로고    scopus 로고
    • Sound and efficient inference with probabilistic and deterministic dependencies
    • Proceedings of the 21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
    • H. Poon and P. Domingos. Sound and efficient inference with probabilistic and deterministic dependencies. In AAAI, pages 458-463, 2006. (Pubitemid 44705326)
    • (2006) Proceedings of the National Conference on Artificial Intelligence , vol.1 , pp. 458-463
    • Poon, H.1    Domingos, P.2
  • 31
    • 57749204548 scopus 로고    scopus 로고
    • A general method for reducing the complexity of relational inference and its application to MCMC
    • H. Poon, P. Domingos, and M. Sumner. A general method for reducing the complexity of relational inference and its application to MCMC. In AAAI, pages 1075-1080, 2008.
    • (2008) AAAI , pp. 1075-1080
    • Poon, H.1    Domingos, P.2    Sumner, M.3
  • 32
    • 84918983692 scopus 로고
    • A machine-oriented logic based on the resolution principle
    • J. A. Robinson. A machine-oriented logic based on the resolution principle. JACM, 12:23-41, 1965.
    • (1965) JACM , vol.12 , pp. 23-41
    • Robinson, J.A.1
  • 34
    • 33749541860 scopus 로고    scopus 로고
    • Solving Bayesian networks by weightedmodel counting
    • T. Sang, P. Beame, and H. Kautz. Solving Bayesian networks by weightedmodel counting. In AAAI, pages 475-482, 2005.
    • (2005) AAAI , pp. 475-482
    • Sang, T.1    Beame, P.2    Kautz, H.3
  • 35
    • 26444512653 scopus 로고    scopus 로고
    • Heuristics for fast exact model counting
    • Theory and Applications of Satisfiability Testing: 8th International Conference, SAT 2005. Proceedings
    • T. Sang, P. Beame, and H. A. Kautz. Heuristics for fast exact model counting. In SAT, pages 226-240, 2005. (Pubitemid 41425509)
    • (2005) Lecture Notes in Computer Science , vol.3569 , pp. 226-240
    • Sang, T.1    Beame, P.2    Kautz, H.3
  • 36
    • 80053148228 scopus 로고    scopus 로고
    • Bisimulation-based approximate lifted inference
    • P. Sen, A. Deshpande, and L. Getoor. Bisimulation-based approximate lifted inference. In UAI, pages 496-505, 2009.
    • (2009) UAI , pp. 496-505
    • Sen, P.1    Deshpande, A.2    Getoor, L.3
  • 37
    • 29344465423 scopus 로고    scopus 로고
    • Discriminative training of Markov logic networks
    • Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
    • P. Singla and P. Domingos. Discriminative training of Markov logic networks. In AAAI, pages 868-873, 2005. (Pubitemid 43006718)
    • (2005) Proceedings of the National Conference on Artificial Intelligence , vol.2 , pp. 868-873
    • Singla, P.1    Domingos, P.2
  • 38
    • 57749181750 scopus 로고    scopus 로고
    • Lifted first-order belief propagation
    • P. Singla and P. Domingos. Lifted first-order belief propagation. In AAAI, pages 1094-1099, 2008.
    • (2008) AAAI , pp. 1094-1099
    • Singla, P.1    Domingos, P.2
  • 39
    • 85034427623 scopus 로고
    • OLD resolution with tabulation
    • H. Tamaki and T. Sato. OLD resolution with tabulation. In ICLP, pages 84-98, 1986.
    • (1986) ICLP , pp. 84-98
    • Tamaki, H.1    Sato, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.