메뉴 건너뛰기




Volumn 26, Issue 6, 2011, Pages 922-947

Modelling and forecasting multivariate realized volatility

Author keywords

[No Author keywords available]

Indexed keywords


EID: 80053076976     PISSN: 08837252     EISSN: 10991255     Source Type: Journal    
DOI: 10.1002/jae.1152     Document Type: Article
Times cited : (222)

References (51)
  • 1
    • 80053075023 scopus 로고
    • Cox and Reid's modification in regression models with correlated error. Discussion paper, Department of Statistics, North Carolina State University.
    • An S, Bloomfield P. 1993. Cox and Reid's modification in regression models with correlated error. Discussion paper, Department of Statistics, North Carolina State University.
    • (1993)
    • An, S.1    Bloomfield, P.2
  • 2
    • 0040747426 scopus 로고    scopus 로고
    • Heterogeneous information arrivals and return volatility dynamics: uncovering the long-run in high frequency returns
    • Andersen TG, Bollerslev T. 1997. Heterogeneous information arrivals and return volatility dynamics: uncovering the long-run in high frequency returns. Journal of Finance 52: 975-1005.
    • (1997) Journal of Finance , vol.52 , pp. 975-1005
    • Andersen, T.G.1    Bollerslev, T.2
  • 5
    • 0036353532 scopus 로고    scopus 로고
    • International assocation with regime shifts
    • Ang A, Bekaert G. 2002. International asset allocation with regime shifts. Review of Financial Studies 15(4): 1137-1187.
    • (2002) Review of Financial Studies , vol.15 , Issue.4 , pp. 1137-1187
    • Ang, A.1    Bekaert, G.2
  • 6
    • 0036221468 scopus 로고    scopus 로고
    • Asymmetric correlations of equity portfolios
    • Ang A, Chen J. 2002. Asymmetric correlations of equity portfolios. Journal of Financial Economics 63(3): 443-494.
    • (2002) Journal of Financial Economics , vol.63 , Issue.3 , pp. 443-494
    • Ang, A.1    Chen, J.2
  • 7
    • 33747809012 scopus 로고    scopus 로고
    • Multivariate stochastic volatility: a review
    • Asai M, McAleer M, Yu J. 2006. Multivariate stochastic volatility: a review. Econometric Reviews 25: 145-175.
    • (2006) Econometric Reviews , vol.25 , pp. 145-175
    • Asai, M.1    McAleer, M.2    Yu, J.3
  • 8
    • 0040485278 scopus 로고    scopus 로고
    • Fractionally integrated generalized autoregressive conditional heteroskedasticity
    • Baillie R, Bollerslev T, Mikkelsen H. 1996. Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 74: 3-30.
    • (1996) Journal of Econometrics , vol.74 , pp. 3-30
    • Baillie, R.1    Bollerslev, T.2    Mikkelsen, H.3
  • 9
    • 2642557940 scopus 로고    scopus 로고
    • Econometric analysis of realised covariation: high frequency based covariance, regression and correlation in financial economics
    • Barndorff-Nielsen OE, Shephard N. 2004. Econometric analysis of realised covariation: high frequency based covariance, regression and correlation in financial economics. Econometrica 72: 885-925.
    • (2004) Econometrica , vol.72 , pp. 885-925
    • Barndorff-Nielsen, O.E.1    Shephard, N.2
  • 10
    • 80053091694 scopus 로고    scopus 로고
    • Multivariate realized stock market volatility. Working Paper 2007-20, Bank of Canada.
    • Bauer GH, Vorkink K. 2007. Multivariate realized stock market volatility. Working Paper 2007-20, Bank of Canada.
    • (2007)
    • Bauer, G.H.1    Vorkink, K.2
  • 12
    • 0000592702 scopus 로고
    • Maximum likelihood estimation of the differencing parameter for invertible short and long memory autoregressive integrated moving average models
    • Beran J. 1995. Maximum likelihood estimation of the differencing parameter for invertible short and long memory autoregressive integrated moving average models. Journal of the Royal Statistical Society 57: 659-672.
    • (1995) Journal of the Royal Statistical Society , vol.57 , pp. 659-672
    • Beran, J.1
  • 14
    • 80053090724 scopus 로고    scopus 로고
    • Estimating the degrees of freedom of the realized volatility Wishart autoregressive model. Working paper.
    • Bonato M. 2009. Estimating the degrees of freedom of the realized volatility Wishart autoregressive model. Working paper.
    • (2009)
    • Bonato, M.1
  • 15
    • 80053088241 scopus 로고    scopus 로고
    • Forecasting realized (co)variances with a block Wishart autoregressive model. SSRN. Available: [2 December 2009].
    • Bonato M, Caporin M, Ranaldo A. 2009. Forecasting realized (co)variances with a block Wishart autoregressive model. SSRN. Available: [2 December 2009].
    • (2009)
    • Bonato, M.1    Caporin, M.2    Ranaldo, A.3
  • 16
    • 80053085616 scopus 로고    scopus 로고
    • Nonstationary Wishart autoregressive model. Working paper, CoFE, University of Konstanz.
    • Chiriac R. 2007. Nonstationary Wishart autoregressive model. Working paper, CoFE, University of Konstanz.
    • (2007)
    • Chiriac, R.1
  • 17
    • 62849101579 scopus 로고    scopus 로고
    • A simple approximate long-memory model of realized volatility
    • Corsi F. 2009. A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics 7: 174-196.
    • (2009) Journal of Financial Econometrics , vol.7 , pp. 174-196
    • Corsi, F.1
  • 18
    • 80053064906 scopus 로고    scopus 로고
    • Realized correlation tick-by-tick. Working paper, University of Lugano.
    • Corsi F, Audrino F. 2007. Realized correlation tick-by-tick. Working paper, University of Lugano.
    • (2007)
    • Corsi, F.1    Audrino, F.2
  • 20
    • 14844365059 scopus 로고    scopus 로고
    • Inference and forecasting for AEFIMA models with an application to US and UK inflation
    • Article 14.
    • Doornik JA, Ooms M. 2004. Inference and forecasting for AEFIMA models with an application to US and UK inflation. Studies in Nonlinear Dynamics and Econometrics 8:Article 14.
    • (2004) Studies in Nonlinear Dynamics and Econometrics , vol.8
    • Doornik, J.A.1    Ooms, M.2
  • 21
    • 0035998182 scopus 로고    scopus 로고
    • Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroscedasticity models
    • Engle R. 2002. Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroscedasticity models. Journal of Business and Economic Statistics 20: 339-350.
    • (2002) Journal of Business and Economic Statistics , vol.20 , pp. 339-350
    • Engle, R.1
  • 22
    • 84963146757 scopus 로고
    • Modeling the persistence of conditional variances
    • Engle R, Bollerslev T. 1986. Modeling the persistence of conditional variances. Econometric Reviews 5: 1-50.
    • (1986) Econometric Reviews , vol.5 , pp. 1-50
    • Engle, R.1    Bollerslev, T.2
  • 23
    • 0037321512 scopus 로고    scopus 로고
    • The economic value of volatility timing using 'realized' volatility
    • Fleming J, Kirby C, Ostdiek B. 2003. The economic value of volatility timing using 'realized' volatility. Journal of Financial Economics 67: 473-509.
    • (2003) Journal of Financial Economics , vol.67 , pp. 473-509
    • Fleming, J.1    Kirby, C.2    Ostdiek, B.3
  • 24
    • 80053091326 scopus 로고    scopus 로고
    • Efficient method of moments. Working paper, Duke University.
    • Gallant R, Tauchen G. 2001. Efficient method of moments. Working paper, Duke University.
    • (2001)
    • Gallant, R.1    Tauchen, G.2
  • 25
    • 80053082923 scopus 로고    scopus 로고
    • Multi-period forecasts of volatility: direct, iterated and mixed-data approaches. EFA 2009 Bergen Meetings Paper.
    • Ghysels E, Rubia A, Valkanov R. 2009. Multi-period forecasts of volatility: direct, iterated and mixed-data approaches. EFA 2009 Bergen Meetings Paper.
    • (2009)
    • Ghysels, E.1    Rubia, A.2    Valkanov, R.3
  • 27
    • 84993601065 scopus 로고
    • On the relation between the expected value and the volatility of the nominal excess return of stocks
    • Glosten LR, Jagannathan R, Runkle DE. 1993. On the relation between the expected value and the volatility of the nominal excess return of stocks. Journal of Finance 48: 1179-1801.
    • (1993) Journal of Finance , vol.48 , pp. 1179-1801
    • Glosten, L.R.1    Jagannathan, R.2    Runkle, D.E.3
  • 30
    • 67349083871 scopus 로고    scopus 로고
    • The Wishart autoregressive process of multivariate stochastic volatility
    • Gourieroux C, Jasiak J, Sufana R. 2009. The Wishart autoregressive process of multivariate stochastic volatility. Journal of Econometrics 150: 167-181.
    • (2009) Journal of Econometrics , vol.150 , pp. 167-181
    • Gourieroux, C.1    Jasiak, J.2    Sufana, R.3
  • 31
    • 0003410290 scopus 로고
    • Princeton University Press: Princeton, NJ.
    • Hamilton JD. 1994. Time Series Analysis. Princeton University Press: Princeton, NJ.
    • (1994) Time Series Analysis
    • Hamilton, J.D.1
  • 32
    • 80053065472 scopus 로고    scopus 로고
    • In-sample fit and out-of-sample fit: their joint distribution and its implications for model selection. Working paper, Stanford University.
    • Hansen PR. 2009. In-sample fit and out-of-sample fit: their joint distribution and its implications for model selection. Working paper, Stanford University.
    • (2009)
    • Hansen, P.R.1
  • 33
    • 33644524444 scopus 로고    scopus 로고
    • Consistent ranking of volatility models
    • Hansen PR, Lunde A. 2006. Consistent ranking of volatility models. Journal of Econometrics 131: 97-121.
    • (2006) Journal of Econometrics , vol.131 , pp. 97-121
    • Hansen, P.R.1    Lunde, A.2
  • 34
    • 80053066048 scopus 로고    scopus 로고
    • The model confidence set. Working paper, Aarhus University.
    • Hansen PR, Lunde A, Nason JM. 2009. The model confidence set. Working paper, Aarhus University.
    • (2009)
    • Hansen, P.R.1    Lunde, A.2    Nason, J.M.3
  • 35
    • 19644389883 scopus 로고    scopus 로고
    • Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements
    • Koopman SJ, Jungbacker B, Hol E. 2005. Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements. Journal of Empirical Finance 12: 445-475.
    • (2005) Journal of Empirical Finance , vol.12 , pp. 445-475
    • Koopman, S.J.1    Jungbacker, B.2    Hol, E.3
  • 36
    • 84977718808 scopus 로고
    • Heteroskedasticity in stock return data: volume versus GARCH effects
    • Lamoureaux C, Lastrapes W. 1990. Heteroskedasticity in stock return data: volume versus GARCH effects. Journal of Finance 45(1): 221-229.
    • (1990) Journal of Finance , vol.45 , Issue.1 , pp. 221-229
    • Lamoureaux, C.1    Lastrapes, W.2
  • 37
    • 67651117949 scopus 로고    scopus 로고
    • On portfolio optimization: how and when do we benefit from high-frequency data?
    • Liu Q. 2009. On portfolio optimization: how and when do we benefit from high-frequency data? Journal of Applied Econometrics 24: 560-582.
    • (2009) Journal of Applied Econometrics , vol.24 , pp. 560-582
    • Liu, Q.1
  • 39
  • 40
    • 80053065870 scopus 로고    scopus 로고
    • Using high frequency stock market index data to calculate, model and forecast realized return variance. Economics Discussion Paper No. 2001/6, European University.
    • Oomen R. 2001. Using high frequency stock market index data to calculate, model and forecast realized return variance. Economics Discussion Paper No. 2001/6, European University.
    • (2001)
    • Oomen, R.1
  • 41
    • 26444497777 scopus 로고    scopus 로고
    • Volatility forecast comparison using imperfect volatility proxies
    • forthcoming).
    • Patton A. 2009. Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics (forthcoming).
    • (2009) Journal of Econometrics
    • Patton, A.1
  • 42
    • 21844512391 scopus 로고
    • Large sample confidence regions based on subsamples under minimal assumptions
    • Politis D, Romano J. 1994. Large sample confidence regions based on subsamples under minimal assumptions. Annals of Statistics 22: 2031-2050.
    • (1994) Annals of Statistics , vol.22 , pp. 2031-2050
    • Politis, D.1    Romano, J.2
  • 44
    • 0012806293 scopus 로고    scopus 로고
    • Joint mean-covariance models with applications to longitudinal data: unconstrained parameterization
    • Pourahmadi M. 1999. Joint mean-covariance models with applications to longitudinal data: unconstrained parameterization. Biometrika 86(3): 677-690.
    • (1999) Biometrika , vol.86 , Issue.3 , pp. 677-690
    • Pourahmadi, M.1
  • 45
    • 0003103947 scopus 로고
    • Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression
    • Robinson PM. 1991. Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression. Journal of Econometrics 47: 67-84.
    • (1991) Journal of Econometrics , vol.47 , pp. 67-84
    • Robinson, P.M.1
  • 46
    • 84977707955 scopus 로고
    • Why does stock market volatility change over time?
    • Schwert GW. 1989. Why does stock market volatility change over time? Journal of Finance 44: 1115-1153.
    • (1989) Journal of Finance , vol.44 , pp. 1115-1153
    • Schwert, G.W.1
  • 48
    • 44049114907 scopus 로고
    • Maximum likelihood estimation of stationary univariate fractionally integrated time series models
    • Sowell F. 1992. Maximum likelihood estimation of stationary univariate fractionally integrated time series models. Journal of Econometrics 53: 165-188.
    • (1992) Journal of Econometrics , vol.53 , pp. 165-188
    • Sowell, F.1
  • 50
    • 84866444629 scopus 로고    scopus 로고
    • Dynamic modelling of large-dimensional covariance matrices
    • In (1st edn), Bauwens L, Pohlmeier W, Veredas D (eds). Springer: Berlin
    • Voev V. 2007. Dynamic modelling of large-dimensional covariance matrices. In High Frequency Financial Econometrics: Recent Developments (1st edn), Bauwens L, Pohlmeier W, Veredas D (eds). Springer: Berlin; 293-312.
    • (2007) High Frequency Financial Econometrics: Recent Developments , pp. 293-312
    • Voev, V.1
  • 51
    • 80053074638 scopus 로고    scopus 로고
    • The RiskMetrics 2006 methodology. Technical document, RiskMetrics.
    • Zumbach G. 2007. The RiskMetrics 2006 methodology. Technical document, RiskMetrics.
    • (2007)
    • Zumbach, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.