메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1-12

Existence of solutions of nonlinear fractional differential equations at resonance

Author keywords

Boundary value problems; Coincidence degree theory; Fractional differential equations; Resonance

Indexed keywords


EID: 80053055657     PISSN: None     EISSN: 14173875     Source Type: Journal    
DOI: 10.14232/ejqtde.2011.1.66     Document Type: Article
Times cited : (11)

References (19)
  • 1
    • 0033884660 scopus 로고    scopus 로고
    • Boundary value problems for fractional diffusion equations
    • R. Metzler, J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A 278, 107-125 (2000).
    • (2000) Phys. A , vol.278 , pp. 107-125
    • Metzler, R.1    Klafter, J.2
  • 2
    • 0141508296 scopus 로고
    • Anomalous transit-time dispersion in amorphous solids
    • H. Scher, E. Montroll, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B 12, 2455-2477 (1975).
    • (1975) Phys. Rev. B , vol.12 , pp. 2455-2477
    • Scher, H.1    Montroll, E.2
  • 3
    • 0007096742 scopus 로고
    • Fractional diffusive waves in viscoelastic solids
    • in: J.L. Wegner, F.R. Norwood (Eds.), Fairfield
    • F. Mainardi, Fractional diffusive waves in viscoelastic solids, in: J.L. Wegner, F.R. Norwood (Eds.), Nonlinear Waves in Solids, Fairfield, 93-97 (1995).
    • (1995) Nonlinear Waves in Solids , pp. 93-97
    • Mainardi, F.1
  • 4
    • 0002795136 scopus 로고    scopus 로고
    • On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity
    • in: F. Keil, W. Mackens, H. Voss, J. Werther (Eds.), Springer-Verlag, Heidelberg
    • K. Diethelm, A.D. Freed, On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in: F. Keil, W. Mackens, H. Voss, J. Werther (Eds.), Scientific Computing in Chemical Engineering IIComputational Fluid Dynamics, Reaction Engineering and Molecular Properties, pp. 217-224. Springer-Verlag, Heidelberg (1999).
    • (1999) Scientific Computing in Chemical Engineering IIComputational Fluid Dynamics, Reaction Engineering and Molecular Properties , pp. 217-224
    • Diethelm, K.1    Freed, A.D.2
  • 5
    • 44949282247 scopus 로고
    • Damping description involving fractional operators
    • L. Gaul, P. Klein, S. Kempfle, Damping description involving fractional operators, Mech. Syst. Signal Process. 5, 81-88 (1991).
    • (1991) Mech. Syst. Signal Process , vol.5 , pp. 81-88
    • Gaul, L.1    Klein, P.2    Kempfle, S.3
  • 6
    • 0028878140 scopus 로고
    • A fractional calculus approach of self-similar protein dynamics
    • W.G. Glockle, T.F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68, 46-53 (1995).
    • (1995) Biophys. J. , vol.68 , pp. 46-53
    • Glockle, W.G.1    Nonnenmacher, T.F.2
  • 7
    • 0001983732 scopus 로고    scopus 로고
    • Fractional calculus: Some basic problems in continuum and statistical mechanics
    • in: A. Carpinteri, F. Mainardi (Eds.), Springer-Verlag, Wien
    • F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, pp. 291-348. Springer-Verlag, Wien (1997).
    • (1997) Fractals and Fractional Calculus in Continuum Mechanics , pp. 291-348
    • Mainardi, F.1
  • 8
    • 0001044887 scopus 로고
    • Relaxation in filled polymers: A fractional calculus approach
    • F. Metzler, W. Schick, H.G. Kilian, T.F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103, 7180-7186 (1995).
    • (1995) J. Chem. Phys. , vol.103 , pp. 7180-7186
    • Metzler, F.1    Schick, W.2    Kilian, H.G.3    Nonnenmacher, T.F.4
  • 10
    • 77954144417 scopus 로고    scopus 로고
    • Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations
    • R.P. Agarwal, D. O'Regan, S. Stanek, Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations, J. Math. Anal. Appl. 371, 57-68 (2010).
    • (2010) J. Math. Anal. Appl. , vol.371 , pp. 57-68
    • Agarwal, R.P.1    O'Regan, D.2    Stanek, S.3
  • 11
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional differential equation
    • Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311, 495-505 (2005).
    • (2005) J. Math. Anal. Appl. , vol.311 , pp. 495-505
    • Bai, Z.1    Lü, H.2
  • 12
    • 38149118737 scopus 로고    scopus 로고
    • Positive solutions of a boundary value problem for a nonlinear fractional differential equation
    • E.R. Kaufmann, E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theory Differ. Equ. 3, 1-11 (2008).
    • (2008) Electron. J. Qual. Theory Differ. Equ. , vol.3 , pp. 1-11
    • Kaufmann, E.R.1    Mboumi, E.2
  • 13
    • 33748963091 scopus 로고    scopus 로고
    • Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method
    • H. Jafari, V.D. Gejji, Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method, Appl. Math. Comput. 180, 700-706 (2006).
    • (2006) Appl. Math. Comput. , vol.180 , pp. 700-706
    • Jafari, H.1    Gejji, V.D.2
  • 14
    • 67349155890 scopus 로고    scopus 로고
    • Boundary value problems for differential equations with fractional order and nonlocal conditions
    • M. Benchohra, S. Hamani, S.K. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal. 71, 2391-2396 (2009).
    • (2009) Nonlinear Anal. , vol.71 , pp. 2391-2396
    • Benchohra, M.1    Hamani, S.2    Ntouyas, S.K.3
  • 15
    • 68349091496 scopus 로고    scopus 로고
    • Positive solutions for boundary value problems of nonlinear fractional differential equation
    • S. Liang, J. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equation, Nonlinear Anal. 71, 5545-5550 (2009).
    • (2009) Nonlinear Anal. , vol.71 , pp. 5545-5550
    • Liang, S.1    Zhang, J.2
  • 16
    • 33645152919 scopus 로고    scopus 로고
    • Positive solutions for boundary-value problems of nonlinear fractional differential equations
    • S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differ. Equ. 36, 1-12 (2006).
    • (2006) Electron. J. Differ. Equ. , vol.36 , pp. 1-12
    • Zhang, S.1
  • 17
    • 78649666829 scopus 로고    scopus 로고
    • A boundary value problem of fractional order at resonance
    • N. Kosmatov, A boundary value problem of fractional order at resonance, Electron. J. Differ. Equ. 135, 1-10 (2010).
    • (2010) Electron. J. Differ. Equ. , vol.135 , pp. 1-10
    • Kosmatov, N.1
  • 18
    • 0002113063 scopus 로고
    • Topological degree and boundary value problems for nonlinear differential equations in topological methods for ordinary differential equations
    • J. Mawhin, Topological degree and boundary value problems for nonlinear differential equations in topological methods for ordinary differential equations, Lecture Notes in Math. 1537, 74-142 (1993).
    • (1993) Lecture Notes in Math. , vol.1537 , pp. 74-142
    • Mawhin, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.