-
2
-
-
0034486891
-
-
SIREAD 0036-1445 10.1137/S0036144500371907
-
H. W. Hethcote, SIAM Rev. SIREAD 0036-1445 10.1137/S0036144500371907 42, 599 (2000).
-
(2000)
SIAM Rev.
, vol.42
, pp. 599
-
-
Hethcote, H.W.1
-
3
-
-
33646893242
-
-
SIREAD 1742-5689 10.1098/rsif.2005.0051
-
M. J. Keeling and K. T. James, J. R. Soc. Interface SIREAD 1742-5689 10.1098/rsif.2005.0051 2, 295 (2005).
-
(2005)
J. R. Soc. Interface
, vol.2
, pp. 295
-
-
Keeling, M.J.1
James, K.T.2
-
4
-
-
0035927795
-
Social networks: The web of human sexual contacts
-
DOI 10.1038/35082140
-
F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y. Åberg, Nature (London) NATUAS 0028-0836 10.1038/35082140 411, 907 (2001). (Pubitemid 32601479)
-
(2001)
Nature
, vol.411
, Issue.6840
, pp. 907-908
-
-
Liljeros, F.1
Edling, C.R.2
Nunes Amaral, L.A.3
Stanley, H.E.4
Aberg, Y.5
-
5
-
-
0035794256
-
Epidemic spreading in scale-free networks
-
DOI 10.1103/PhysRevLett.86.3200
-
R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.86.3200 86, 3200 (2001). (Pubitemid 32317894)
-
(2001)
Physical Review Letters
, vol.86
, Issue.14
, pp. 3200-3203
-
-
Pastor-Satorras, R.1
Vespignani, A.2
-
7
-
-
34948820617
-
When individual behaviour matters: Homogeneous and network models in epidemiology
-
DOI 10.1098/rsif.2007.1100
-
S. Bansal, B. T. Grenfell, and L. A. Meyers, J. R. Soc. Interface PRLTAO 1742-5689 10.1098/rsif.2007.1100 4, 879 (2007). (Pubitemid 47523493)
-
(2007)
Journal of the Royal Society Interface
, vol.4
, Issue.16
, pp. 879-891
-
-
Bansal, S.1
Grenfell, B.T.2
Meyers, L.A.3
-
9
-
-
3142519922
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.92.218701
-
P. S. Dodds and D. J. Watts, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92.218701 92, 218701 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 218701
-
-
Dodds, P.S.1
Watts, D.J.2
-
11
-
-
0020737985
-
On the critical behavior of the general epidemic process and dynamical percolation
-
DOI 10.1016/0025-5564(82)90036-0
-
P. Grassberger, Math. Biosci. MABIAR 0025-5564 10.1016/0025-5564(82) 90036-0 63, 157 (1983). (Pubitemid 13085555)
-
(1983)
Mathematical Biosciences
, vol.63
, Issue.2
, pp. 157-172
-
-
Grassberger, P.1
-
12
-
-
0036845363
-
Percolation on heterogeneous networks as a model for epidemics
-
DOI 10.1016/S0025-5564(02)00117-7, PII S0025556402001177
-
L. M. Sander, C. P. Warren, I. Sokolov, C. Simon, and J. Koopman, Math. Biosci. MABIAR 0025-5564 10.1016/S0025-5564(02)00117-7 180, 293 (2002). (Pubitemid 35304359)
-
(2002)
Mathematical Biosciences
, vol.180
, pp. 293-305
-
-
Sander, L.M.1
Warren, C.P.2
Sokolov, I.M.3
Simon, C.4
Koopman, J.5
-
13
-
-
27144516752
-
Threshold effects for two pathogens spreading on a network
-
DOI 10.1103/PhysRevLett.95.108701, 108701
-
M. E. J. Newman, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett. 95.108701 95, 108701 (2005). (Pubitemid 41505818)
-
(2005)
Physical Review Letters
, vol.95
, Issue.10
, pp. 1-4
-
-
Newman, M.E.J.1
-
14
-
-
77950449117
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.81.036118
-
S. Funk and V. A. A. Jansen, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.81.036118 81, 036118 (2010).
-
(2010)
Phys. Rev. e
, vol.81
, pp. 036118
-
-
Funk, S.1
Jansen, V.A.A.2
-
15
-
-
33845803656
-
Epidemic dynamics of two species of interacting particles on scale-free networks
-
DOI 10.1103/PhysRevE.74.066113
-
Y.-Y. Ahn, H. Jeong, N. Masuda, and J. D. Noh, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.74.066113 74, 066113 (2006). (Pubitemid 46013215)
-
(2006)
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
, vol.74
, Issue.6
, pp. 066113
-
-
Ahn, Y.-Y.1
Jeong, H.2
Masuda, N.3
Noh, J.D.4
-
16
-
-
84990671447
-
-
PRLTAO 1042-9832 10.1002/rsa.3240060204
-
M. Molloy and B. Reed, Random Struc. Algorithms PRLTAO 1042-9832 10.1002/rsa.3240060204 6, 161 (1995).
-
(1995)
Random Struc. Algorithms
, vol.6
, pp. 161
-
-
Molloy, M.1
Reed, B.2
-
18
-
-
80053041732
-
-
For technical reasons we also require that the first and second moments of the degree distribution be finite, which excludes some networks with heavy-tailed distributions
-
For technical reasons we also require that the first and second moments of the degree distribution be finite, which excludes some networks with heavy-tailed distributions.
-
-
-
-
19
-
-
0034323311
-
Resilience of the Internet to random breakdowns
-
DOI 10.1103/PhysRevLett.85.4626
-
R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85.4626 85, 4626 (2000). (Pubitemid 32024907)
-
(2000)
Physical Review Letters
, vol.85
, Issue.21
, pp. 4626-4628
-
-
Cohen, R.1
Erez, K.2
Ben-Avraham, D.3
Havlin, S.4
-
20
-
-
4243939794
-
Network robustness and fragility: percolation on random graphs
-
DOI 10.1103/PhysRevLett.85.5468
-
D. S. Callaway, M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85.5468 85, 5468 (2000). (Pubitemid 32089658)
-
(2000)
Physical Review Letters
, vol.85
, Issue.25
, pp. 5468-5471
-
-
Callaway, D.S.1
Newman, M.E.J.2
Strogatz, S.H.3
Watts, D.J.4
-
21
-
-
80052997531
-
-
b takes its maximum value of 1
-
b takes its maximum value of 1.
-
-
-
-
22
-
-
80051651728
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.84.026105
-
V. Marceau, P.-A. Noël, L. Hébert-Dufresne, A. Allard, and L. J. Dubé, Phys. Rev. E. PLEEE8 1539-3755 10.1103/PhysRevE.84.026105 84, 026105 (2011).
-
(2011)
Phys. Rev. E.
, vol.84
, pp. 026105
-
-
Marceau, V.1
Noël, P.-A.2
Hébert-Dufresne, L.3
Allard, A.4
Dubé, L.J.5
-
23
-
-
80052995003
-
-
rk because the initial carriers of the diseases are chosen at random and not infected via a neighbor. In real life, on the other hand, all infections are acquired via a neighbor, so the equations should always be correct. These subtleties do not affect our arguments, however, so we ignore them here
-
rk because the initial carriers of the diseases are chosen at random and not infected via a neighbor. In real life, on the other hand, all infections are acquired via a neighbor, so the equations should always be correct. These subtleties do not affect our arguments, however, so we ignore them here.
-
-
-
-
24
-
-
80053033076
-
-
A naive implementation of this scheme would be computationally wasteful, and also somewhat arbitrary since one would have to decide a threshold level of infection below which a disease would be deemed to have died out. In our simulations we mitigate these problems somewhat by first generating the bond percolation clusters for the entire network and starting the simulated spread of the two diseases at vertices chosen from the giant clusters. This does not guarantee that both diseases will produce an epidemic in the coexistence region but it reduces substantially the number of cases where a disease dies out
-
A naive implementation of this scheme would be computationally wasteful, and also somewhat arbitrary since one would have to decide a threshold level of infection below which a disease would be deemed to have died out. In our simulations we mitigate these problems somewhat by first generating the bond percolation clusters for the entire network and starting the simulated spread of the two diseases at vertices chosen from the giant clusters. This does not guarantee that both diseases will produce an epidemic in the coexistence region but it reduces substantially the number of cases where a disease dies out.
-
-
-
-
25
-
-
77954322317
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.82.016101
-
B. Karrer and M. E. J. Newman, Phys. Rev. E PLEEE8 1539-3755 10.1103/PhysRevE.82.016101 82, 016101 (2010).
-
(2010)
Phys. Rev. e
, vol.82
, pp. 016101
-
-
Karrer, B.1
Newman, M.E.J.2
|