-
1
-
-
0036703760
-
Plate surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model
-
W. C. Tan, and, M. Y. Xu, Plate surface suddenly set in motion in a viscoelastic fluid with fractional Maxwell model, Acta Mech Sinica 18 (2002), 342-359.
-
(2002)
Acta Mech Sinica
, vol.18
, pp. 342-359
-
-
Tan, W.C.1
Xu, M.Y.2
-
2
-
-
0037410852
-
A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates
-
W. C. Tan, W. X. Pan, and, M. Y. Xu, A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates, Int J Non-Linear Mech 38 (2003), 645-650.
-
(2003)
Int J Non-Linear Mech
, vol.38
, pp. 645-650
-
-
Tan, W.C.1
Pan, W.X.2
Xu, M.Y.3
-
3
-
-
33745132702
-
The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model
-
DOI 10.1016/j.nonrwa.2005.09.007, PII S1468121805001355
-
F. Shen, W. C. Tan, Y. Zhao, and, T. Masuoka, The Rayleigh-Stokes problem for a hea1ed generalized second grade fluid with fractional derivative model, Nonlinear Anal Real World Appl 7 (2006), 1072-1080. (Pubitemid 43903681)
-
(2006)
Nonlinear Analysis: Real World Applications
, vol.7
, Issue.5
, pp. 1072-1080
-
-
Shen, F.1
Tan, W.2
Zhao, Y.3
Masuoka, T.4
-
4
-
-
0001349637
-
On the decay of vortices in a second grade fluid
-
K. R. Rajagopal, On the decay of vortices in a second grade fluid, Meccanica 15 (1980), 185-186.
-
(1980)
Meccanica
, vol.15
, pp. 185-186
-
-
Rajagopal, K.R.1
-
5
-
-
0019701541
-
On a class of exact solutions to the equations of motion of a second grade fluid
-
DOI 10.1016/0020-7225(81)90135-X
-
K. R. Rajagopal, and, A. S. Gup1a, On a class of exact solutions to the equations of motion of a second grade fluid, Int J Eng Sci 19 (1981), 1009-1014. (Pubitemid 12445569)
-
(1981)
International Journal of Engineering Science
, vol.19
, Issue.7
, pp. 1009-1014
-
-
Rajagopal, K.R.1
Gupta, A.S.2
-
6
-
-
0037030796
-
The impulsive motion of flat plate in a general second grade fluid
-
W. C. Tan, and, M. Y. Xu, The impulsive motion of flat plate in a general second grade fluid, Mech Res Commun 29 (2002), 3-9.
-
(2002)
Mech Res Commun
, vol.29
, pp. 3-9
-
-
Tan, W.C.1
Xu, M.Y.2
-
7
-
-
11144231363
-
Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates
-
W. C. Tan, and, M. Y. Xu, Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates, Acta Mech Sinica 20 (2004), 471-476.
-
(2004)
Acta Mech Sinica
, vol.20
, pp. 471-476
-
-
Tan, W.C.1
Xu, M.Y.2
-
8
-
-
0036722192
-
The Rayleigh-Stokes problem for heated second grade fluids
-
DOI 10.1016/S0020-7462(00)00118-9, PII S0020746200001189
-
C. Fetecau, and, F. Corina, The Rayleigh-Stokes problem for heated second grade fluids, Int J Non-Linear Mech 37 (2002), 1011-1015. (Pubitemid 34222683)
-
(2002)
International Journal of Non-Linear Mechanics
, vol.37
, Issue.6
, pp. 1011-1015
-
-
Fetecau, C.1
Fetecau, C.2
-
9
-
-
80052928868
-
Numerical solu1ion for Stokes' first problem for a heated generalized second grade fluid with fractional derivative
-
C. Wu, Numerical solu1ion for Stokes' first problem for a heated generalized second grade fluid with fractional derivative, Appl Numer Math, to appear.
-
Appl Numer Math, to Appear
-
-
Wu, C.1
-
10
-
-
56949093590
-
A Fourier method and an extrapolation technique for Stokes' first problem for a heated generalized second grade fluid with fractional derivative
-
C.-M. Chen, F. Liu, and, V. Anhb, A Fourier method and an extrapolation technique for Stokes' first problem for a heated generalized second grade fluid with fractional derivative, J Comput Appl Math 223 (2009), 777-789.
-
(2009)
J Comput Appl Math
, vol.223
, pp. 777-789
-
-
Chen, C.-M.1
Liu, F.2
Anhb, V.3
-
12
-
-
36149001420
-
A Fourier method for the fractional diffusion equation describing sub-diffusion
-
C.-M. Chen, F. Liu, I. Turner, and, V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, J Comput Phys 227 (2007), 886-897.
-
(2007)
J Comput Phys
, vol.227
, pp. 886-897
-
-
Chen, C.-M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
13
-
-
40849115179
-
Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation
-
DOI 10.1016/j.amc.2007.09.020, PII S0096300307009514
-
C.-M. Chen, F. Liu, and, K. Burrage, Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation, Appl Math Comput 198 (2008), 754-769. (Pubitemid 351400744)
-
(2008)
Applied Mathematics and Computation
, vol.198
, Issue.2
, pp. 754-769
-
-
Chen, C.-m.1
Liu, F.2
Burrage, K.3
-
14
-
-
84914701719
-
A new Fourier analysis method for the Galilei invariant fractional advection diffusion equation
-
(CTAC)
-
C.-M. Chen, F. Liu, I. Turner, and, V. Anh, A new Fourier analysis method for the Galilei invariant fractional advection diffusion equation, ANZIAM J 48 (CTAC 2006), C775-C789.
-
(2006)
ANZIAM J
, vol.48
-
-
Chen, C.-M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
15
-
-
34547673244
-
Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation
-
DOI 10.1016/j.amc.2006.08.162, PII S0096300306012100
-
F. Liu, P. Zhuang, V. Anh, I. Turner, and, K. Burrage, Stability and convergence of difference methods for the space-time fractional advection-diffusion equation, Appl Math Comput 191 (2007), 12-20. (Pubitemid 47223382)
-
(2007)
Applied Mathematics and Computation
, vol.191
, Issue.1
, pp. 12-20
-
-
Liu, F.1
Zhuang, P.2
Anh, V.3
Turner, I.4
Burrage, K.5
-
16
-
-
0348230399
-
Time fractional advection dispersion equation
-
F. Liu, V. Anh, I. Turner, and, P. Zhuang, Time fractional advection dispersion equation, J Appl Math Comput 13 (2003), 233-245.
-
(2003)
J Appl Math Comput
, vol.13
, pp. 233-245
-
-
Liu, F.1
Anh, V.2
Turner, I.3
Zhuang, P.4
-
17
-
-
33751533397
-
Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation
-
F. Liu, S. Shen, V. Anh, and, I. Turner, Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation, ANZIAM J 46 (2005), 488-504.
-
(2005)
ANZIAM J
, vol.46
, pp. 488-504
-
-
Liu, F.1
Shen, S.2
Anh, V.3
Turner, I.4
-
18
-
-
84867978055
-
Implicit difference approximation for the time fractional diffusion equation
-
Extra Edition
-
P. Zhang, and, F. liu, Implicit difference approximation for the time fractional diffusion equation, J Appl Math Comput 22 (2006), 87-99. (Pubitemid 44695544)
-
(2006)
Journal of Applied Mathematics and Computing
, vol.22
, Issue.3
, pp. 87-99
-
-
Zhuang, P.1
Liu, F.2
-
19
-
-
33846798041
-
Approximation of Levy-Feller advection-dispersion process by random walk and finite difference method
-
Q. Liu, F. Liu, I. Turner, and, V. Anh, Approximation of Levy-Feller advection-dispersion process by random walk and finite difference method, J Comput Phys 222 (2007), 57-70.
-
(2007)
J Comput Phys
, vol.222
, pp. 57-70
-
-
Liu, Q.1
Liu, F.2
Turner, I.3
Anh, V.4
-
20
-
-
25444472344
-
An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations
-
DOI 10.1137/030602666
-
S. B. Yus1e, and, L. Acedo, An explicit finite difference method and a new Von Neumman-type stability analysis for fractional diffusion equations, SIAM J Numer Anal 42 (2005), 1862-1874. (Pubitemid 41634613)
-
(2005)
SIAM Journal on Numerical Analysis
, vol.42
, Issue.5
, pp. 1862-1874
-
-
Yuste, S.B.1
Acedo, L.2
-
21
-
-
70549107817
-
Error analysis of an explicit finite difference approximation for the space fractional diffusion
-
S. Shen, and, F. Liu, Error analysis of an explicit finite difference approximation for the space fractional diffusion, ANZIAM J 46 (2005), 871-887.
-
(2005)
ANZIAM J
, vol.46
, pp. 871-887
-
-
Shen, S.1
Liu, F.2
-
22
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
DOI 10.1016/j.jcp.2004.11.025, PII S0021999104004887
-
T. A. M. Langlands, and, B. I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J Comput Phys 205 (2005), 719-736. (Pubitemid 40518394)
-
(2005)
Journal of Computational Physics
, vol.205
, Issue.2
, pp. 719-736
-
-
Langlands, T.A.M.1
Henry, B.I.2
-
23
-
-
0034032484
-
Application of a fractional advection-dispersion equation
-
DOI 10.1029/2000WR900031
-
D. A. Benson, S. W. Wheatcraft, and, M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour Res 36 (2000), 1403-1412. (Pubitemid 30334241)
-
(2000)
Water Resources Research
, vol.36
, Issue.6
, pp. 1403-1412
-
-
Benson, D.A.1
Wheatcraft, S.W.2
Meerschaert, M.M.3
-
24
-
-
0034113992
-
The fractional-order governing equation of Levy motion
-
DOI 10.1029/2000WR900032
-
D. A. Benson, S. W. Wheatcraft, and, M. M. Meerschaert, The fractional-order governing equation of Levy motion, Water Resour Res 36 (2000), 1413-1423. (Pubitemid 30334242)
-
(2000)
Water Resources Research
, vol.36
, Issue.6
, pp. 1413-1423
-
-
Benson, D.A.1
Wheatcraft, S.W.2
Meerschaert, M.M.3
-
25
-
-
0242607016
-
A study of the subdiffusive fractional Fokker-Plank equation of bistable systems
-
F. So, and, K. L. Liu, A study of the subdiffusive fractional Fokker-Plank equation of bistable systems, Physica A 331 (2004), 378-390.
-
(2004)
Physica A
, vol.331
, pp. 378-390
-
-
So, F.1
Liu, K.L.2
-
26
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamics approach
-
R. Me1zler, and, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys Rep 339 (2000), 1-77.
-
(2000)
Phys Rep
, vol.339
, pp. 1-77
-
-
Mezler, R.1
Klafter, J.2
-
27
-
-
35648947830
-
Subdiffusion model for calcium spark in cardiac myocytes
-
W. Tan, C. Fu, C. Fu, W. Xie, and, H. Cheng, Subdiffusion model for calcium spark in cardiac myocytes, Appl Phys Lett 91 (2007), 183901-183903.
-
(2007)
Appl Phys Lett
, vol.91
, pp. 183901-183903
-
-
Tan, W.1
Fu, C.2
Fu, C.3
Xie, W.4
Cheng, H.5
|