메뉴 건너뛰기




Volumn 74, Issue 17, 2011, Pages 2893-2905

Fixed point method for autonomous on-line neural network training

Author keywords

Autonomous learning; Extended Kalman Filter; On line learning; Step size adaptation

Indexed keywords

APPROXIMATION PROBLEMS; AUTONOMOUS LEARNING; EXPERIMENTAL STUDIES; FIXED POINT METHODS; LEARNING PROCESS; LOSS FUNCTIONS; ON-LINE NEURAL NETWORKS; ONLINE LEARNING; ONLINE TRAINING; STEEPEST DESCENT; STEP-SIZE ADAPTATION; TRAINING EXAMPLE; TRAINING PROCESS;

EID: 80052930723     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.03.029     Document Type: Article
Times cited : (6)

References (22)
  • 1
    • 0026841022 scopus 로고
    • A real time learning algorithm for a multilayered neural network based on Extended Kalman Filter
    • Iiguni Y., Sakai H., Tokumaru H. A real time learning algorithm for a multilayered neural network based on Extended Kalman Filter. IEEE Transactions on Signal Processing 1992, 45(6):959-966.
    • (1992) IEEE Transactions on Signal Processing , vol.45 , Issue.6 , pp. 959-966
    • Iiguni, Y.1    Sakai, H.2    Tokumaru, H.3
  • 2
    • 80052943232 scopus 로고
    • Acceleration techniques for the backpropagation algorithm, in: Neural Networks EURASIP Workshop, Sesim
    • F.M. Silva, L.B. Almeida, Acceleration techniques for the backpropagation algorithm, in: Neural Networks EURASIP Workshop, Sesim, 1990.
    • (1990)
    • Silva, F.M.1    Almeida, L.B.2
  • 3
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs R.A. Increased rates of convergence through learning rate adaptation. Neural Networks 1988, 1(4):295-308.
    • (1988) Neural Networks , vol.1 , Issue.4 , pp. 295-308
    • Jacobs, R.A.1
  • 4
    • 84898942573 scopus 로고    scopus 로고
    • Online independent component analysis with local learning rate adaptation, in: Advances in NIPS
    • N.N. Schraudolph, X. Giannakopoulos, Online independent component analysis with local learning rate adaptation, in: Advances in NIPS, vol. 12, 2000, pp. 789-795.
    • (2000) , vol.12 , pp. 789-795
    • Schraudolph, N.N.1    Giannakopoulos, X.2
  • 5
    • 33750119752 scopus 로고    scopus 로고
    • On adaptive learning rate that guarantees convergence in feedforward networks
    • Behera L., Kumar S., Patnaik A. On adaptive learning rate that guarantees convergence in feedforward networks. IEEE Transactions on Neural Networks 2006, 17(5):1116-1125.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.5 , pp. 1116-1125
    • Behera, L.1    Kumar, S.2    Patnaik, A.3
  • 6
    • 69249225560 scopus 로고    scopus 로고
    • Neighborhood based modified backpropagation algorithm using adaptive learning parameters for training feedforward neural networks
    • Kathirvalavakumar T., Subavathi S.J. Neighborhood based modified backpropagation algorithm using adaptive learning parameters for training feedforward neural networks. Neurocomputing 2009, 72:3915-3921.
    • (2009) Neurocomputing , vol.72 , pp. 3915-3921
    • Kathirvalavakumar, T.1    Subavathi, S.J.2
  • 7
    • 0024861150 scopus 로고
    • Terminal attractors in neural networks
    • Zak M. Terminal attractors in neural networks. Neural Networks 1989, 2:259-274.
    • (1989) Neural Networks , vol.2 , pp. 259-274
    • Zak, M.1
  • 8
    • 80053303342 scopus 로고    scopus 로고
    • An improved training algorithm for feedforward neural network learning based on terminal attractors
    • Yu X., Wang B., Batbayar B., Wang L., Man Z. An improved training algorithm for feedforward neural network learning based on terminal attractors. Journal of Global Optimization 2010, 1-14.
    • (2010) Journal of Global Optimization , pp. 1-14
    • Yu, X.1    Wang, B.2    Batbayar, B.3    Wang, L.4    Man, Z.5
  • 9
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M.T., Mehnaj M. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 1994, 5(6):989-993.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Mehnaj, M.2
  • 10
    • 0026882084 scopus 로고
    • Conjugate gradient algorithm for efficient training of artificial neural networks
    • Charalambous C. Conjugate gradient algorithm for efficient training of artificial neural networks. Circuits, Devices and Systems, IEE Proceedings G 1992, 139:301-310.
    • (1992) Circuits, Devices and Systems, IEE Proceedings G , vol.139 , pp. 301-310
    • Charalambous, C.1
  • 11
    • 0034868960 scopus 로고    scopus 로고
    • An algorithm for fast convergence in training neural networks, in: International Joint Conference on Neural Networks
    • B.M. Wilamowski, S. Iplikci, O. Kaynak, M.O. Efe, An algorithm for fast convergence in training neural networks, in: International Joint Conference on Neural Networks, vol. 3, 2001, pp. 1778-1782.
    • (2001) , vol.3 , pp. 1778-1782
    • Wilamowski, B.M.1    Iplikci, S.2    Kaynak, O.3    Efe, M.O.4
  • 12
    • 23044513932 scopus 로고    scopus 로고
    • Improvement of the neighborhood based Levenberg-Marquardt algorithm by local adaptation of the learning coefficient
    • Toledo A., Pinzolas M., Ibarrola J.J., Lera G. Improvement of the neighborhood based Levenberg-Marquardt algorithm by local adaptation of the learning coefficient. IEEE Transactions on Neural Networks 2005, 16:988-992.
    • (2005) IEEE Transactions on Neural Networks , vol.16 , pp. 988-992
    • Toledo, A.1    Pinzolas, M.2    Ibarrola, J.J.3    Lera, G.4
  • 14
    • 71749106087 scopus 로고    scopus 로고
    • Real-time reinforcement learning by sequential actor-critics and experience replay
    • Wawrzyński P. Real-time reinforcement learning by sequential actor-critics and experience replay. Neural Networks 2009, 22:1484-1497.
    • (2009) Neural Networks , vol.22 , pp. 1484-1497
    • Wawrzyński, P.1
  • 16
    • 52149116388 scopus 로고    scopus 로고
    • Fast online policy gradient learning with SMD gain vector adaptation, in: Advances in NIPS
    • N.N. Schraudolph, J. Yu, D. Aberdeen, Fast online policy gradient learning with SMD gain vector adaptation, in: Advances in NIPS, vol. 18, 2006, pp. 1185-1192.
    • (2006) , vol.18 , pp. 1185-1192
    • Schraudolph, N.N.1    Yu, J.2    Aberdeen, D.3
  • 17
    • 76649105482 scopus 로고    scopus 로고
    • Recursive adaptation of stepsize parameter for non-stationary environments
    • Noda I. Recursive adaptation of stepsize parameter for non-stationary environments. Principles of Practice in Multi-Agent Systems 2009, 525-533.
    • (2009) Principles of Practice in Multi-Agent Systems , pp. 525-533
    • Noda, I.1
  • 19
    • 80052953198 scopus 로고    scopus 로고
    • UCI machine learning repository
    • A. Frank, A. Asuncion, UCI machine learning repository, 2010.
    • (2010)
    • Frank, A.1    Asuncion, A.2
  • 22
    • 73949136715 scopus 로고    scopus 로고
    • Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time-delays
    • Wang Z., Wang Y., Liu Y. Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time-delays. IEEE Transactions on Neural Networks 2010, 21(1):11-25.
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.1 , pp. 11-25
    • Wang, Z.1    Wang, Y.2    Liu, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.