-
4
-
-
51949110976
-
Object categorization using co-occurrence, location and appearance
-
C. Galleguillos, A. Rabinovich, and S. Belongie. Object categorization using co-occurrence, location and appearance. In Proc. CVPR. 2008.
-
(2008)
Proc. CVPR.
-
-
Galleguillos, C.1
Rabinovich, A.2
Belongie, S.3
-
5
-
-
84858716911
-
Region-based segmentation and object detection
-
S. Gould, T. Gao, and D. Koller. Region-based segmentation and object detection. In NIPS. 2009.
-
(2009)
NIPS.
-
-
Gould, S.1
Gao, T.2
Koller, D.3
-
6
-
-
69549088877
-
Beyond nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers
-
A. Gupta and L. S. Davis. Beyond nouns: Exploiting prepositions and comparative adjectives for learning visual classifiers. In Proc. ECCV. 2008.
-
(2008)
Proc. ECCV.
-
-
Gupta, A.1
Davis, L.S.2
-
7
-
-
78149319842
-
Block world revisited: Image understanding using qualitative geometry and mechanics
-
A. Gupta, A. Efros, and M. Hebert. Block world revisited: Image understanding using qualitative geometry and mechanics. In In ECCV. 2010.
-
(2010)
ECCV.
-
-
Gupta, A.1
Efros, A.2
Hebert, M.3
-
9
-
-
34948885292
-
Learning and incorporating top-down cues in image segmentation
-
X. He, R. Zemel, and D. Ray. Learning and incorporating top-down cues in image segmentation. In ECCV. 2006.
-
(2006)
ECCV.
-
-
He, X.1
Zemel, R.2
Ray, D.3
-
10
-
-
33745947933
-
Geometric context from a single image
-
D. Hoiem, A. Efros, and M. Hebert. Geometric context from a single image. In ICCV. 2005.
-
(2005)
ICCV.
-
-
Hoiem, D.1
Efros, A.2
Hebert, M.3
-
11
-
-
80052900196
-
Learning what and how of contextual models for scene labeling
-
A. Jain, A. Gupta, and L. S. Davis. Learning what and how of contextual models for scene labeling. In ECCV. 2010.
-
(2010)
ECCV.
-
-
Jain, A.1
Gupta, A.2
Davis, L.S.3
-
12
-
-
80052875619
-
Probabilistic nearest neighbor classifier with active learning
-
P. Jain and A. Kapoor. Probabilistic nearest neighbor classifier with active learning. Microsoft Research, Redmond.
-
Microsoft Research, Redmond.
-
-
Jain, P.1
Kapoor, A.2
-
13
-
-
80052883480
-
Active learning for large multi-class problems
-
P. Jain and A. Kapoor. Active learning for large multi-class problems. In IEEE CVPR. 2009.
-
(2009)
IEEE CVPR.
-
-
Jain, P.1
Kapoor, A.2
-
14
-
-
80052913465
-
Efficiently selecting regions for scene understanding
-
M. P. Kumar and D. Koller. Efficiently selecting regions for scene understanding. In NIPS. 2010.
-
(2010)
NIPS.
-
-
Kumar, M.P.1
Koller, D.2
-
16
-
-
77953225585
-
Associative hierarchical crfs for object class image segmentation
-
L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr. Associative hierarchical crfs for object class image segmentation. In ICCV. 2009.
-
(2009)
ICCV.
-
-
Ladicky, L.1
Russell, C.2
Kohli, P.3
Torr, P.H.S.4
-
17
-
-
84858731529
-
An integer projected fixed point method for graph matching and map inference
-
M. Leordeanu, M. Hebert, and R. Sukthankar. An integer projected fixed point method for graph matching and map inference. In Advances in NIPS. 2009.
-
(2009)
Advances in NIPS.
-
-
Leordeanu, M.1
Hebert, M.2
Sukthankar, R.3
-
18
-
-
70450219021
-
Towards total scene understanding: Classification, annotation and segmentation in an automatic framework
-
L.-J. Li, R. Socher, and L. Fei-Fei. Towards total scene understanding: classification, annotation and segmentation in an automatic framework. In CVPR. 2009.
-
(2009)
CVPR.
-
-
Li, L.-J.1
Socher, R.2
Fei-Fei, L.3
-
19
-
-
84898492432
-
Improving spatial support for objects via multiple segmentations
-
T. Malisiewicz and A. A. Efros. Improving spatial support for objects via multiple segmentations. In BMVC. 2007.
-
(2007)
BMVC.
-
-
Malisiewicz, T.1
Efros, A.A.2
-
20
-
-
51949096556
-
Recognition by association via learning per-exemplar distances
-
T. Malisiewicz and A. A. Efros. Recognition by association via learning per-exemplar distances. In CVPR. 2008.
-
(2008)
CVPR.
-
-
Malisiewicz, T.1
Efros, A.A.2
-
21
-
-
3042525106
-
Learning to detect natural image boundaries using local brightness, color, and texture cues
-
D. Martin, F. C., and J. Malik. Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Tran. on PAMI, 26:530-549, 2004.
-
(2004)
IEEE Tran. on PAMI
, vol.26
, pp. 530-549
-
-
Martin, D.1
Malik, J.2
-
23
-
-
33845596932
-
Using multiple segmentations to discover objects and their extent in image collections
-
B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and A. Zisserman. Using multiple segmentations to discover objects and their extent in image collections. In ECCV. 2006.
-
(2006)
ECCV.
-
-
Russell, B.C.1
Efros, A.A.2
Sivic, J.3
Freeman, W.T.4
Zisserman, A.5
-
24
-
-
33747472134
-
Hierarchy and adaptivity in segmenting visual scenes
-
E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt. Hierarchy and adaptivity in segmenting visual scenes. In the journal of Nature, 442(7104):719-864, 2006.
-
(2006)
The Journal of Nature
, vol.442
, Issue.7104
, pp. 719-864
-
-
Sharon, E.1
Galun, M.2
Sharon, D.3
Basri, R.4
Brandt, A.5
-
25
-
-
51949114829
-
Semantic texton forests for image categorization and segmentation
-
J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categorization and segmentation. In Proc. IEEE CVPR. 2008.
-
(2008)
Proc. IEEE CVPR.
-
-
Shotton, J.1
Johnson, M.2
Cipolla, R.3
-
26
-
-
33845423382
-
Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
-
J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In Proc. ECCV. 2006.
-
(2006)
Proc. ECCV.
-
-
Shotton, J.1
Winn, J.2
Rother, C.3
Criminisi, A.4
-
28
-
-
84899024607
-
Contextual models for object detection using boosted random fields
-
A. Torralba, K. Murphy, and W. Freeman. Contextual models for object detection using boosted random fields. In NIPS. 2005.
-
(2005)
NIPS.
-
-
Torralba, A.1
Murphy, K.2
Freeman, W.3
-
29
-
-
51949119486
-
Auto-context and its application to high-level vision tasks
-
Z. Tu. Auto-context and its application to high-level vision tasks. In CVPR. 2008.
-
(2008)
CVPR.
-
-
Tu, Z.1
|