-
1
-
-
77955635233
-
Cancer statistics 2010
-
Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010;60:277-300
-
(2010)
CA. Cancer J. Clin.
, vol.60
, pp. 277-300
-
-
Jemal, A.1
Siegel, R.2
Xu, J.3
Ward, E.4
-
2
-
-
73349121354
-
Clinical cancer advances 2009: Major research advances in cancer treatment prevention and screening-a report from the american society of clinical oncology
-
Petrelli NJ, Winer EP, Brahmer J, et al. Clinical Cancer Advances 2009: major research advances in cancer treatment, prevention, and screening - a report from the American Society of Clinical Oncology. J Clin Oncol 2009;27:6052-69
-
(2009)
J. Clin. Oncol.
, vol.27
, pp. 6052-6069
-
-
Petrelli, N.J.1
Winer, E.P.2
Brahmer, J.3
-
3
-
-
79955921754
-
Folfirinox versus gemcitabine for metastatic pancreatic cancer
-
Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011;364:1817-25
-
(2011)
N. Engl. J. Med.
, vol.364
, pp. 1817-1825
-
-
Conroy, T.1
Desseigne, F.2
Ychou, M.3
-
4
-
-
77950554464
-
Stromal depletion goes on trial in pancreatic cancer
-
Garber K. Stromal depletion goes on trial in pancreatic cancer. J Natl Cancer Inst 2010;102:448-50
-
(2010)
J. Natl. Cancer Inst.
, vol.102
, pp. 448-450
-
-
Garber, K.1
-
5
-
-
53949106325
-
Current status of targeted agents TA in advanced pancreatic cancer APC: Meta-analysis of randomized clinical trials RCT
-
Milella M, Bria E, Cuppone F, et al. Current status of targeted agents (TA) in advanced pancreatic cancer (APC): Meta-analysis of randomized clinical trials (RCT). J Clin Oncol 2008;26:4637
-
(2008)
J. Clin. Oncol.
, vol.26
, pp. 4637
-
-
Milella, M.1
Bria, E.2
Cuppone, F.3
-
6
-
-
52149123619
-
Core signaling pathways in human pancreatic cancers revealed by global genomic analyses
-
Jones S, Zhang X, Parsons DW, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008;321:1801-6
-
(2008)
Science
, vol.321
, pp. 1801-1806
-
-
Jones, S.1
Zhang, X.2
Parsons, D.W.3
-
7
-
-
47549090432
-
TGFbeta in cancer
-
Massague J. TGFbeta in cancer. Cell 2008;134:215-30
-
(2008)
Cell.
, vol.134
, pp. 215-230
-
-
Massague, J.1
-
8
-
-
0142104985
-
Smad-dependent and Smad-independent pathways in TGF-β family signalling
-
DOI 10.1038/nature02006
-
Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003;425:577-84 (Pubitemid 37280136)
-
(2003)
Nature
, vol.425
, Issue.6958
, pp. 577-584
-
-
Derynck, R.1
Zhang, Y.E.2
-
10
-
-
23044466047
-
Specificity and versatility in TGF-β signaling through smads
-
DOI 10.1146/annurev.cellbio.21.022404.142018
-
Feng XH, Derynck R. Specificity and versatility in TGF-beta signaling through Smads. Annu Rev Cell Dev Biol 2005;21:659-93 (Pubitemid 41740650)
-
(2005)
Annual Review of Cell and Developmental Biology
, vol.21
, pp. 659-693
-
-
Feng, X.-H.1
Derynck, R.2
-
12
-
-
33646876973
-
Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway
-
DOI 10.1016/j.cell.2006.03.045, PII S0092867406005186
-
He W, Dorn DC, Erdjument-Bromage H, et al. Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. Cell 2006;125:929-41 (Pubitemid 43795187)
-
(2006)
Cell
, vol.125
, Issue.5
, pp. 929-941
-
-
He, W.1
Dorn, D.C.2
Erdjument-Bromage, H.3
Tempst, P.4
Moore, M.A.S.5
Massague, J.6
-
13
-
-
40649097065
-
IKKα is a critical coregulator of a Smad4-independent TGFβ-Smad2/3 signaling pathway that controls keratinocyte differentiation
-
DOI 10.1073/pnas.0712044105
-
Descargues P, Sil AK, Sano Y, et al. IKKalpha is a critical coregulator of a Smad4-independent TGFbeta-Smad2/ 3 signaling pathway that controls keratinocyte differentiation. Proc Natl Acad Sci USA 2008;105:2487-92 (Pubitemid 351520540)
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, Issue.7
, pp. 2487-2492
-
-
Descargues, P.1
Sil, A.K.2
Sano, Y.3
Korchynskyi, O.4
Han, G.5
Owens, P.6
Wang, X.-J.7
Karin, M.8
-
14
-
-
14844364701
-
Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity
-
DOI 10.1126/science.1105718
-
Ozdamar B, Bose R, Barrios-Rodiles M, et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 2005;307:1603-9 (Pubitemid 40354739)
-
(2005)
Science
, vol.307
, Issue.5715
, pp. 1603-1609
-
-
Ozdamar, B.1
Bose, R.2
Barrios-Rodiles, M.3
Wang, H.-R.4
Zhang, Y.5
Wrana, J.L.6
-
15
-
-
0035185853
-
Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism
-
Bhowmick NA, Ghiassi M, Bakin A, et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001;12:27-36 (Pubitemid 32060576)
-
(2001)
Molecular Biology of the Cell
, vol.12
, Issue.1
, pp. 27-36
-
-
Bhowmick, N.A.1
Ghiassi, M.2
Bakin, A.3
Aakre, M.4
Lundquist, C.A.5
Engel, M.E.6
Arteaga, C.L.7
Moses, H.L.8
-
16
-
-
34248547538
-
Transforming growth factor β signaling via ras in mesenchymal cells requires p21-activated kinase 2 for extracellular signal-regulated kinase-dependent transcriptional responses
-
DOI 10.1158/0008-5472.CAN-06-3211
-
Suzuki K, Wilkes MC, Garamszegi N, et al. Transforming growth factor beta signaling via Ras in mesenchymal cells requires p21-activated kinase 2 for extracellular signal-regulated kinase-dependent transcriptional responses. Cancer Res 2007;67:3673-82 (Pubitemid 46762152)
-
(2007)
Cancer Research
, vol.67
, Issue.8
, pp. 3673-3682
-
-
Suzuki, K.1
Wilkes, M.C.2
Garamszegi, N.3
Edens, M.4
Leof, E.B.5
-
17
-
-
33845666522
-
TGF-β activated kinase-1: New insights into the diverse roles of TAK1 in development and immunity
-
Delaney JR, Mlodzik M. TGF-beta activated kinase-1: new insights into the diverse roles of TAK1 in development and immunity. Cell Cycle 2006;5:2852-5 (Pubitemid 44953934)
-
(2006)
Cell Cycle
, vol.5
, Issue.24
, pp. 2852-2855
-
-
Delaney, J.R.1
Mlodzik, M.2
-
18
-
-
0029551805
-
Identification of a member of the MAPKKK family as a potential Mediator of TGF-β signal transduction
-
Yamaguchi K, Shirakabe K, Shibuya H, et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 1995;270:2008-11 (Pubitemid 26097194)
-
(1995)
Science
, vol.270
, Issue.5244
, pp. 2008-2011
-
-
Yamaguchi, K.1
Shirakabe, K.2
Shibuya, H.3
Irie, K.4
Oishi, I.5
Ueno, N.6
Taniguchi, T.7
Nishida, E.8
Matsumoto, K.9
-
19
-
-
34248570795
-
Ubiquitin-mediated activation of TAK1 and IKK
-
DOI 10.1038/sj.onc.1210413, PII 1210413
-
Adhikari A, Xu M, Chen ZJ. Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 2007;26:3214-26 (Pubitemid 46763016)
-
(2007)
Oncogene
, vol.26
, Issue.22
, pp. 3214-3226
-
-
Adhikari, A.1
Xu, M.2
Chen, Z.J.3
-
20
-
-
0033580466
-
The kinase TAK1 can activate the NIK-IkappaB as well as the MAP kinase cascade in the IL-1 signalling pathway
-
Ninomiya-Tsuji J, Kishimoto K, Hiyama A, et al. The kinase TAK1 can activate the NIK-IkappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999;398:252-6
-
(1999)
Nature
, vol.398
, pp. 252-256
-
-
Ninomiya-Tsuji, J.1
Kishimoto, K.2
Hiyama, A.3
-
21
-
-
23044483249
-
Simultaneous blockade of NFκB, JNK, and p38 MAPK by a kinase-inactive mutant of the protein kinase TAK1 sensitizes cells to apoptosis and affects a distinct spectrum of tumor necrosis target genes
-
DOI 10.1074/jbc.M411657200
-
Thiefes A, Wolter S, Mushinski JF, et al. Simultaneous blockade of NFkappaB, JNK, and p38 MAPK by a kinase-inactive mutant of the protein kinase TAK1 sensitizes cells to apoptosis and affects a distinct spectrum of tumor necrosis factor target genes. J Biol Chem 2005;280:27728-41 (Pubitemid 41076887)
-
(2005)
Journal of Biological Chemistry
, vol.280
, Issue.30
, pp. 27728-27741
-
-
Thiefes, A.1
Wolter, S.2
Mushinski, J.F.3
Hoffmann, E.4
Dittrich-Breiholz, O.5
Graue, N.6
Dorrie, A.7
Schneider, H.8
Wirth, D.9
Luckow, B.10
Resch, K.11
Kracht, M.12
-
22
-
-
33745851830
-
TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis
-
DOI 10.1074/jbc.M603384200
-
Omori E, Matsumoto K, Sanjo H, et al. TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis. J Biol Chem 2006;281:19610-17 (Pubitemid 44035464)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.28
, pp. 19610-19617
-
-
Omori, E.1
Matsumoto, K.2
Sanjo, H.3
Sato, S.4
Akira, S.5
Smart, R.C.6
Ninomiya-Tsuji, J.7
-
23
-
-
30944444113
-
Alterations in components of the TGF-β superfamily signaling pathways in human cancer
-
DOI 10.1016/j.cytogfr.2005.09.009, PII S1359610105001139
-
Levy L, Hill CS. Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 2006;17:41-58 (Pubitemid 43117515)
-
(2006)
Cytokine and Growth Factor Reviews
, vol.17
, Issue.1-2
, pp. 41-58
-
-
Levy, L.1
Hill, C.S.2
-
24
-
-
26844446396
-
Expression of transforming growth factor-beta-1 and p27Kip1 in pancreatic adenocarcinomas: Relation with cell-cycle-associated proteins and clinicopathologic characteristics
-
Culhaci N, Sagol O, Karademir S, et al. Expression of transforming growth factor-beta-1 and p27Kip1 in pancreatic adenocarcinomas: relation with cell-cycle-associated proteins and clinicopathologic characteristics. BMC Cancer 2005;5:98
-
(2005)
BMC Cancer
, vol.5
, pp. 98
-
-
Culhaci, N.1
Sagol, O.2
Karademir, S.3
-
25
-
-
0035486830
-
TGF-beta1 promotes liver metastasis of pancreatic cancer by modulating the capacity of cellular invasion
-
Teraoka H, Sawada T, Yamashita Y, et al. TGF-beta1 promotes liver metastasis of pancreatic cancer by modulating the capacity of cellular invasion. Int J Oncol 2001;19:709-15
-
(2001)
Int. J. Oncol.
, vol.19
, pp. 709-715
-
-
Teraoka, H.1
Sawada, T.2
Yamashita, Y.3
-
26
-
-
0027131252
-
Enhanced expression of transforming growth factor β isoforms in pancreatic cancer correlates with decreased survival
-
Friess H, Yamanaka Y, Buchler M, et al. Enhanced expression of transforming growth factor beta isoforms in pancreatic cancer correlates with decreased survival. Gastroenterology 1993;105:1846-56 (Pubitemid 24002804)
-
(1993)
Gastroenterology
, vol.105
, Issue.6
, pp. 1846-1856
-
-
Friess, H.1
Yamanaka, Y.2
Buchler, M.3
Ebert, M.4
Beger, H.G.5
Gold, L.I.6
Korc, M.7
-
27
-
-
0032711157
-
Enhanced expression of the type II transforming growth factor-β receptor is associated with decreased survival in human pancreatic cancer
-
Wagner M, Kleeff J, Friess H, et al. Enhanced expression of the type II transforming growth factor-beta receptor is associated with decreased survival in human pancreatic cancer. Pancreas 1999;19:370-6 (Pubitemid 29501433)
-
(1999)
Pancreas
, vol.19
, Issue.4
, pp. 370-376
-
-
Wagner, M.1
Kleeff, J.2
Friess, H.3
Buchler, M.W.4
Korc, M.5
-
29
-
-
0036186862
-
Myofibroblasts are responsible for the desmoplastic reaction surrounding human pancreatic carcinomas
-
DOI 10.1067/msy.2002.119192
-
Yen TW, Aardal NP, Bronner MP, et al. Myofibroblasts are responsible for the desmoplastic reaction surrounding human pancreatic carcinomas. Surgery 2002;131:129-34 (Pubitemid 34169536)
-
(2002)
Surgery
, vol.131
, Issue.2
, pp. 129-134
-
-
Yen, T.W.F.1
Aardal, N.P.2
Bronner, M.P.3
Thorning, D.R.4
Savard, C.E.5
Lee, S.P.6
Bell Jr., R.H.7
-
30
-
-
35948933046
-
Transforming growth factor-β and the immune response to malignant disease
-
DOI 10.1158/1078-0432.CCR-07-1654
-
Teicher BA. Transforming growth factor-beta and the immune response to malignant disease. Clin Cancer Res 2007;13:6247-51 (Pubitemid 350075011)
-
(2007)
Clinical Cancer Research
, vol.13
, Issue.21
, pp. 6247-6251
-
-
Teicher, B.A.1
-
31
-
-
33747748129
-
Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells
-
Bellone G, Carbone A, Smirne C, et al. Cooperative induction of a tolerogenic dendritic cell phenotype by cytokines secreted by pancreatic carcinoma cells. J Immunol 2006;177:3448-60 (Pubitemid 44277866)
-
(2006)
Journal of Immunology
, vol.177
, Issue.5
, pp. 3448-3460
-
-
Bellone, G.1
Carbone, A.2
Smirne, C.3
Scirelli, T.4
Buffolino, A.5
Novarino, A.6
Stacchini, A.7
Bertetto, O.8
Palestre, G.9
Sorio, C.10
Scarpa, A.11
Emanuelli, G.12
Rodeck, U.13
-
32
-
-
77950595599
-
Targeting the transforming growth factor-beta signalling pathway in metastatic cancer
-
Korpal M, Kang Y. Targeting the transforming growth factor-beta signalling pathway in metastatic cancer. Eur J Cancer 2010;46:1232-40
-
(2010)
Eur. J. Cancer
, vol.46
, pp. 1232-1240
-
-
Korpal, M.1
Kang, Y.2
-
33
-
-
32944459015
-
Molecular mechanisms of pancreatic carcinogenesis
-
DOI 10.1111/j.1349-7006.2005.00134.x
-
Furukawa T, Sunamura M, Horii A. Molecular mechanisms of pancreatic carcinogenesis. Cancer Sci 2006;97:1-7 (Pubitemid 43257020)
-
(2006)
Cancer Science
, vol.97
, Issue.1
, pp. 1-7
-
-
Furukawa, T.1
Sunamura, M.2
Horii, A.3
-
34
-
-
35348901453
-
Basics of TGF-beta and pancreatic cancer
-
Truty MJ, Urrutia R. Basics of TGF-beta and pancreatic cancer. Pancreatology 2007;7:423-35
-
(2007)
Pancreatology
, vol.7
, pp. 423-435
-
-
Truty, M.J.1
Urrutia, R.2
-
35
-
-
0036894028
-
DPC4/Smad4 expression and outcome in pancreatic ductal adenocarcinoma
-
DOI 10.1200/JCO.2002.12.063
-
Biankin AV, Morey AL, Lee CS, et al. DPC4/Smad4 expression and outcome in pancreatic ductal adenocarcinoma. J Clin Oncol 2002;20:4531-42 (Pubitemid 35402956)
-
(2002)
Journal of Clinical Oncology
, vol.20
, Issue.23
, pp. 4531-4542
-
-
Biankin, A.V.1
Morey, A.L.2
Lee, C.-S.3
Kench, J.G.4
Biankin, S.A.5
Hook, H.C.6
Head, D.R.7
Hugh, T.B.8
Sutherland, R.L.9
Henshall, S.M.10
-
36
-
-
0033570376
-
TbetaR-I 6A is a candidate tumor susceptibility allele
-
Pasche B, Kolachana P, Nafa K, et al. TbetaR-I(6A) is a candidate tumor susceptibility allele. Cancer Res 1999;59:5678-82
-
(1999)
Cancer Res.
, vol.59
, pp. 5678-5682
-
-
Pasche, B.1
Kolachana, P.2
Nafa, K.3
-
37
-
-
10444261212
-
Development of TGF-β signalling inhibitors for cancer therapy
-
DOI 10.1038/nrd1580
-
Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004;3:1011-22 (Pubitemid 39642364)
-
(2004)
Nature Reviews Drug Discovery
, vol.3
, Issue.12
, pp. 1011-1022
-
-
Yingling, J.M.1
Blanchard, K.L.2
Sawyer, J.S.3
-
38
-
-
42249099019
-
LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis
-
DOI 10.1158/1535-7163.MCT-07-0337
-
Melisi D, Ishiyama S, Sclabas GM, et al. LY2109761, a novel transforming growth factor beta receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis. Mol Cancer Ther 2008;7:829-40 (Pubitemid 351551036)
-
(2008)
Molecular Cancer Therapeutics
, vol.7
, Issue.4
, pp. 829-840
-
-
Melisi, D.1
Ishiyama, S.2
Sclabas, G.M.3
Fleming, J.B.4
Xia, Q.5
Tortora, G.6
Abbruzzese, J.L.7
Chiao, P.J.8
-
39
-
-
53349164136
-
The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner
-
Sorrentino A, Thakur N, Grimsby S, et al. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 2008;10:1199-207
-
(2008)
Nat. Cell. Biol.
, vol.10
, pp. 1199-1207
-
-
Sorrentino, A.1
Thakur, N.2
Grimsby, S.3
-
40
-
-
79961223562
-
Modulation of pancreatic cancer chemoresistance by inhibition of TAK1
-
published online: 8 July 2011 10.1093 jnci djr243 in press
-
Melisi D, Xia Q, Paradiso G, et al. Modulation of pancreatic cancer chemoresistance by inhibition of TAK1. J Natl Cancer Inst 2011;103:published online: 8 July 2011; doi: 10.1093/jnci/djr243 (in press)
-
(2011)
J. Natl. Cancer Inst.
, vol.103
-
-
Melisi, D.1
Xia, Q.2
Paradiso, G.3
-
41
-
-
72049091524
-
Targeting the transforming growth factor-beta signaling pathway in human cancer
-
Nagaraj NS, Datta PK. Targeting the transforming growth factor-beta signaling pathway in human cancer. Expert Opin Investig Drugs 2010;19:77-91
-
(2010)
Expert Opin Investig Drugs
, vol.19
, pp. 77-91
-
-
Nagaraj, N.S.1
Datta, P.K.2
-
42
-
-
80052914697
-
Phase I II study with trabedersen AP 12009 monotherapy for the treatment of patients with advanced pancreatic cancer malignant melanoma and colorectal carcinoma
-
Oettle H, Hilbig A, Seufferlein T, et al. Phase I/II study with trabedersen (AP 12009) monotherapy for the treatment of patients with advanced pancreatic cancer, malignant melanoma, and colorectal carcinoma. ASCO Meeting Abstracts 2011;29:2513
-
(2011)
ASCO Meeting Abstracts
, vol.29
, pp. 2513
-
-
Oettle, H.1
Hilbig, A.2
Seufferlein, T.3
-
43
-
-
73449089494
-
Companies waver in efforts to target transforming growth factor beta in cancer
-
Garber K. Companies waver in efforts to target transforming growth factor beta in cancer. J Natl Cancer Inst 2009;101:1664-7
-
(2009)
J. Natl. Cancer Inst.
, vol.101
, pp. 1664-1667
-
-
Garber, K.1
-
44
-
-
79551647444
-
Switching TGFbeta from a tumor suppressor to a tumor promoter
-
Inman GJ. Switching TGFbeta from a tumor suppressor to a tumor promoter. Curr Opin Genet Dev 2011;21:93-9
-
(2011)
Curr. Opin. Genet. Dev.
, vol.21
, pp. 93-99
-
-
Inman, G.J.1
-
45
-
-
63049136592
-
A mutant-p53 Smad complex opposes p63 to empower TGFbeta-induced metastasis
-
Adorno M, Cordenonsi M, Montagner M, et al. A mutant-p53/ Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 2009;137:87-98
-
(2009)
Cell.
, vol.137
, pp. 87-98
-
-
Adorno, M.1
Cordenonsi, M.2
Montagner, M.3
-
46
-
-
77249140520
-
Antimetastatic role of Smad4 signaling in colorectal cancer
-
e961-e963
-
Zhang B, Halder SK, Kashikar ND, et al. Antimetastatic role of Smad4 signaling in colorectal cancer. Gastroenterology 2010;138:969-80; e961-e963
-
(2010)
Gastroenterology
, vol.138
, pp. 969-980
-
-
Zhang, B.1
Halder, S.K.2
Kashikar, N.D.3
-
47
-
-
0034692430
-
Role of the insulin-like growth factor family in cancer development and progression
-
Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 2000;92:1472-89
-
(2000)
J. Natl. Cancer Inst.
, vol.92
, pp. 1472-1489
-
-
Yu, H.1
Rohan, T.2
-
48
-
-
0042926509
-
Regulation of hypoxia-inducible factor-1α, vascular endothelial growth factor, and angiogenesis by an insulin-like growth factor-I receptor autocrine loop in human pancreatic cancer
-
Stoeltzing O, Liu W, Reinmuth N, et al. Regulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and angiogenesis by an insulin-like growth factor-I receptor autocrine loop in human pancreatic cancer. Am J Pathol 2003;163:1001-11 (Pubitemid 37040136)
-
(2003)
American Journal of Pathology
, vol.163
, Issue.3
, pp. 1001-1011
-
-
Stoeltzing, O.1
Liu, W.2
Reinmuth, N.3
Fan, F.4
Parikh, A.A.5
Bucana, C.D.6
Evans, D.B.7
Semenza, G.L.8
Ellis, L.M.9
-
49
-
-
13644262798
-
Insulin-like growth factor ligands, receptors, and binding proteins in cancer
-
DOI 10.1002/path.1712
-
Foulstone E, Prince S, Zaccheo O, et al. Insulin-like growth factor ligands, receptors, and binding proteins in cancer. J Pathol 2005;205:145-53 (Pubitemid 40227987)
-
(2005)
Journal of Pathology
, vol.205
, Issue.2
, pp. 145-153
-
-
Foulstone, E.1
Prince, S.2
Zaccheo, O.3
Burns, J.L.4
Harper, J.5
Jacobs, C.6
Church, D.7
Hassan, A.B.8
-
50
-
-
59649111113
-
Inhibitors of insulin-like growth factor-1 receptor tyrosine kinase are preferentially cytotoxic to nutrient-deprived pancreatic cancer cells
-
Momose I, Kunimoto S, Osono M, Ikeda D. Inhibitors of insulin-like growth factor-1 receptor tyrosine kinase are preferentially cytotoxic to nutrient-deprived pancreatic cancer cells. Biochem Biophys Res Commun 2009;380:171-6
-
(2009)
Biochem. Biophys. Res. Commun
, vol.380
, pp. 171-176
-
-
Momose, I.1
Kunimoto, S.2
Osono, M.3
Ikeda, D.4
-
51
-
-
49849098247
-
Insulin-like growth factor-I receptor blockade by a specific tyrosine kinase inhibitor for human gastrointestinal carcinomas
-
Piao W, Wang Y, Adachi Y, et al. Insulin-like growth factor-I receptor blockade by a specific tyrosine kinase inhibitor for human gastrointestinal carcinomas. Mol Cancer Ther 2008;7:1483-93
-
(2008)
Mol. Cancer Ther.
, vol.7
, pp. 1483-1493
-
-
Piao, W.1
Wang, Y.2
Adachi, Y.3
-
52
-
-
67650924582
-
Pancreatic cancer: Molecular pathogenesis and new therapeutic targets
-
Wong HH, Lemoine NR. Pancreatic cancer: molecular pathogenesis and new therapeutic targets. Nat Rev Gastroenterol Hepatol 2009;6:412-22
-
(2009)
Nat. Rev. Gastroenterol. Hepatol.
, vol.6
, pp. 412-422
-
-
Wong, H.H.1
Lemoine, N.R.2
-
53
-
-
0242403449
-
Coexpression of IGF-1R and c-Src Proteins in Human Pancreatic Ductal Adenocarcinoma
-
DOI 10.1023/A:1026122421369
-
Hakam A, Fang Q, Karl R, Coppola D. Coexpression of IGF-1R and c-Src proteins in human pancreatic ductal adenocarcinoma. Dig Dis Sci 2003;48:1972-8 (Pubitemid 37410086)
-
(2003)
Digestive Diseases and Sciences
, vol.48
, Issue.10
, pp. 1972-1978
-
-
Hakam, A.1
Fang, Q.2
Karl, R.3
Coppola, D.4
-
54
-
-
0141988681
-
Genetic blockade of the insulin-like growth factor-I receptor: A promising strategy for human pancreatic cancer
-
Min Y, Adachi Y, Yamamoto H, et al. Genetic blockade of the insulin-like growth factor-I receptor: a promising strategy for human pancreatic cancer. Cancer Res 2003;63:6432-41 (Pubitemid 37255193)
-
(2003)
Cancer Research
, vol.63
, Issue.19
, pp. 6432-6441
-
-
Min, Y.1
Adachi, Y.2
Yamamoto, H.3
Ito, H.4
Itoh, F.5
Lee, C.-T.6
Nadaf, S.7
Carbone, D.P.8
Imai, K.9
-
55
-
-
0028997487
-
Insulin-like growth factor I overexpression in human pancreatic cancer: Evidence for autocrine and paracrine roles
-
Bergmann U, Funatomi H, Yokoyama M, et al. Insulin-like growth factor I overexpression in human pancreatic cancer: evidence for autocrine and paracrine roles. Cancer Res 1995;55:2007-11
-
(1995)
Cancer Res.
, vol.55
, pp. 2007-2011
-
-
Bergmann, U.1
Funatomi, H.2
Yokoyama, M.3
-
56
-
-
2442696659
-
Serum insulin-like growth factor-I, insulin-like growth factor binding protein-3, and the risk of pancreatic cancer death
-
DOI 10.1002/ijc.20147
-
Lin Y, Tamakoshi A, Kikuchi S, et al. Serum insulin-like growth factor-I, insulin-like growth factor binding protein-3, and the risk of pancreatic cancer death. Int J Cancer 2004;110:584-8 (Pubitemid 38658024)
-
(2004)
International Journal of Cancer
, vol.110
, Issue.4
, pp. 584-588
-
-
Lin, Y.1
Tamakoshi, A.2
Kikuchi, S.3
Yagyu, K.4
Obata, Y.5
Ishibashi, T.6
Kawamura, T.7
Inaba, Y.8
Kurosawa, M.9
Motohashi, Y.10
Ohno, Y.11
-
57
-
-
46049100584
-
Inhibition of insulin-like growth factor-I receptor IGF-IR using NVP-AEW541 a small molecule kinase inhibitor reduces orthotopic pancreatic cancer growth and angiogenesis
-
Moser C, Schachtschneider P, Lang SA, et al. Inhibition of insulin-like growth factor-I receptor (IGF-IR) using NVP-AEW541, a small molecule kinase inhibitor, reduces orthotopic pancreatic cancer growth and angiogenesis. Eur J Cancer 2008;44:1577-86
-
(2008)
Eur. J. Cancer
, vol.44
, pp. 1577-1586
-
-
Moser, C.1
Schachtschneider, P.2
Lang, S.A.3
-
58
-
-
77954777571
-
Novel agents for the treatment of pancreatic adenocarcinoma: Any jight at the end of the tunnel highlights from the 2010
-
Chicago IL USA June 4-8 JOP
-
Dimou AT, Syrigos KN, Saif MW. Novel agents for the treatment of pancreatic adenocarcinoma: any light at the end of the tunnel? Highlights from the "2010 ASCO Annual Meeting". Chicago, IL, USA. June 4-8, 2010; JOP 11: 324-327
-
(2010)
ASCO Annual Meeting
, vol.11
, pp. 324-327
-
-
Dimou, A.T.1
Syrigos, K.N.2
Saif, M.W.3
-
59
-
-
78349267741
-
Phase I II study of MK-0646 the humanized monoclonal IGF-1R antibody in combination with gemcitabine or gemcitabine plus erlotinib E for advanced pancreatic cancer
-
Javle MM, Varadhachary GR, Shroff RT, et al. Phase I/II study of MK-0646, the humanized monoclonal IGF-1R antibody in combination with gemcitabine or gemcitabine plus erlotinib (E) for advanced pancreatic cancer. J Clin Oncol 2010;28:4039
-
(2010)
J. Clin. Oncol.
, vol.28
, pp. 4039
-
-
Javle, M.M.1
Varadhachary, G.R.2
Shroff, R.T.3
-
60
-
-
78349242693
-
A placebo-controlled randomized phase II study of conatumumab C or AMG 479 A or placebo P plus gemcitabine G in patients pts with metastatic pancreatic cancer mPC
-
Kindler HL, Richards DA, Stephenson J, et al. A placebo-controlled, randomized phase II study of conatumumab (C) or AMG 479 (A) or placebo (P) plus gemcitabine (G) in patients (pts) with metastatic pancreatic cancer (mPC). J Clin Oncol 2010;28:4035
-
(2010)
J. Clin. Oncol.
, vol.28
, pp. 4035
-
-
Kindler, H.L.1
Richards, D.A.2
Stephenson, J.3
-
61
-
-
77956227862
-
Randomized open label phase III trial of figitumumab in combination with paclitaxel and carboplatin versus paclitaxel and carboplatin in patients with non-small cell lung cancer NSCLC
-
Jassem J, Langer CJ, Karp DD, et al. Randomized, open label, phase III trial of figitumumab in combination with paclitaxel and carboplatin versus paclitaxel and carboplatin in patients with non-small cell lung cancer (NSCLC). ASCO Meeting Abstracts 2010;28:7500
-
(2010)
ASCO Meeting Abstracts
, vol.28
, pp. 7500
-
-
Jassem, J.1
Langer, C.J.2
Karp, D.D.3
-
62
-
-
75849159664
-
A novel strategy to inhibit FAK and IGF-1R decreases growth of pancreatic cancer xenografts
-
Zheng D, Golubovskaya V, Kurenova E, et al. A novel strategy to inhibit FAK and IGF-1R decreases growth of pancreatic cancer xenografts. Mol Carcinog 2009;49:200-9
-
(2009)
Mol. Carcinog
, vol.49
, pp. 200-209
-
-
Zheng, D.1
Golubovskaya, V.2
Kurenova, E.3
-
63
-
-
46949105858
-
FAK and IGF-IR interact to provide survival signals in human pancreatic adenocarcinoma cells
-
DOI 10.1093/carcin/bgn026
-
Liu W, Bloom DA, Cance WG, et al. FAK and IGF-IR interact to provide survival signals in human pancreatic adenocarcinoma cells. Carcinogenesis 2008;29:1096-107 (Pubitemid 351958687)
-
(2008)
Carcinogenesis
, vol.29
, Issue.6
, pp. 1096-1107
-
-
Liu, W.1
Bloom, D.A.2
Cance, W.G.3
Kurenova, E.V.4
Golubovskaya, V.M.5
Hochwald, S.N.6
-
64
-
-
70349974840
-
Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer
-
Bailey JM, Mohr AM, Hollingsworth MA. Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer. Oncogene 2009;28:3513-25
-
(2009)
Oncogene
, vol.28
, pp. 3513-3525
-
-
Bailey, J.M.1
Mohr, A.M.2
Hollingsworth, M.A.3
-
65
-
-
70949096151
-
The hedgehog pathway and pancreatic cancer
-
Hidalgo M, Maitra A. The hedgehog pathway and pancreatic cancer. N Engl J Med 2009;361:2094-6
-
(2009)
N. Engl. J. Med.
, vol.361
, pp. 2094-2096
-
-
Hidalgo, M.1
Maitra, A.2
-
66
-
-
33646577163
-
Genetics and biology of pancreatic ductal adenocarcinoma
-
DOI 10.1101/gad.1415606
-
Hezel AF, Kimmelman AC, Stanger BZ, et al. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 2006;20:1218-49 (Pubitemid 43727584)
-
(2006)
Genes and Development
, vol.20
, Issue.10
, pp. 1218-1249
-
-
Hezel, A.F.1
Kimmelman, A.C.2
Stanger, B.Z.3
Bardeesy, N.4
DePinho, R.A.5
-
67
-
-
68149124175
-
Blockade of hedgehog signaling pathway as a therapeutic strategy for pancreatic cancer
-
Xu FG, Ma QY, Wang Z. Blockade of hedgehog signaling pathway as a therapeutic strategy for pancreatic cancer. Cancer Lett 2009;283:119-24
-
(2009)
Cancer Lett
, vol.283
, pp. 119-124
-
-
Xu, F.G.1
Ma, Q.Y.2
Wang, Z.3
-
68
-
-
77749249596
-
Hedgehog promotes neovascularization in pancreatic cancers by regulating Ang-1 and IGF-1 expression in bone-marrow derived pro-angiogenic cells
-
Nakamura K, Sasajima J, Mizukami Y, et al. Hedgehog promotes neovascularization in pancreatic cancers by regulating Ang-1 and IGF-1 expression in bone-marrow derived pro-angiogenic cells. PLoS One 2010;5:e8824
-
(2010)
PLoS One
, vol.5
-
-
Nakamura, K.1
Sasajima, J.2
Mizukami, Y.3
-
69
-
-
77953284901
-
Dyrk1b-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS
-
Lauth M, Bergstrom A, Shimokawa T, et al. DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nat Struct Mol Biol 2010;17:718-25
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 718-725
-
-
Lauth, M.1
Bergstrom, A.2
Shimokawa, T.3
-
70
-
-
34548241874
-
Shh signaling and pancreatic cancer: Implications for therapy?
-
Morton JP, Lewis BC. Shh signaling and pancreatic cancer: implications for therapy? Cell Cycle 2007;6:1553-7 (Pubitemid 47327939)
-
(2007)
Cell Cycle
, vol.6
, Issue.13
, pp. 1553-1557
-
-
Morton, J.P.1
Lewis, B.C.2
-
72
-
-
77950647110
-
Small-molecule inhibitors of the hedgehog signaling pathway as cancer therapeutics
-
Peukert S, Miller-Moslin K. Small-molecule inhibitors of the hedgehog signaling pathway as cancer therapeutics. ChemMedChem 2010;5:500-12
-
(2010)
Chem. Med. Chem.
, vol.5
, pp. 500-512
-
-
Peukert, S.1
Miller-Moslin, K.2
-
73
-
-
68049128117
-
Paracrine hedgehog signaling in cancer
-
Theunissen JW, de Sauvage FJ. Paracrine Hedgehog signaling in cancer. Cancer Res 2009;69:6007-10
-
(2009)
Cancer Res.
, vol.69
, pp. 6007-6010
-
-
Theunissen, J.W.1
De Sauvage, F.J.2
-
74
-
-
58149506283
-
GLI1 is regulated through smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation
-
Nolan-Stevaux O, Lau J, Truitt ML, et al. GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation. Genes Dev 2009;23:24-36
-
(2009)
Genes Dev.
, vol.23
, pp. 24-36
-
-
Nolan-Stevaux, O.1
Lau, J.2
Truitt, M.L.3
-
75
-
-
63149124772
-
Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis
-
USA
-
Tian H, Callahan CA, DuPree KJ, et al. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci USA 2009;106:4254-9
-
(2009)
Proc. Natl. Acad. Sci.
, vol.106
, pp. 4254-4259
-
-
Tian, H.1
Callahan, C.A.2
DuPree, K.J.3
-
76
-
-
52149119128
-
A paracrine requirement for hedgehog signalling in cancer
-
Yauch RL, Gould SE, Scales SJ, et al. A paracrine requirement for hedgehog signalling in cancer. Nature 2008;455:406-10
-
(2008)
Nature
, vol.455
, pp. 406-410
-
-
Yauch, R.L.1
Gould, S.E.2
Scales, S.J.3
-
77
-
-
58149143021
-
Sonic hedgehog promotes desmoplasia in pancreatic cancer
-
Bailey JM, Swanson BJ, Hamada T, et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res 2008;14:5995-6004
-
(2008)
Clin. Cancer Res.
, vol.14
, pp. 5995-6004
-
-
Bailey, J.M.1
Swanson, B.J.2
Hamada, T.3
-
78
-
-
0034960583
-
The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors
-
DOI 10.1038/89083
-
Pola R, Ling LE, Silver M, et al. The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 2001;7:706-11 (Pubitemid 32588027)
-
(2001)
Nature Medicine
, vol.7
, Issue.6
, pp. 706-711
-
-
Pola, R.1
Ling, L.E.2
Silver, M.3
Corbley, M.J.4
Kearney, M.5
Blake Pepinsky, R.6
Shapiro, R.7
Taylor, F.R.8
Baker, D.P.9
Asahara, T.10
Isner, J.M.11
-
79
-
-
55349146248
-
Insulin-like growth factor 2 is required for progression to advanced medulloblastoma in patched1 heterozygous mice
-
Corcoran RB, Bachar Raveh T, Barakat MT, et al. Insulin-like growth factor 2 is required for progression to advanced medulloblastoma in patched1 heterozygous mice. Cancer Res 2008;68:8788-95
-
(2008)
Cancer Res.
, vol.68
, pp. 8788-8795
-
-
Corcoran, R.B.1
Bachar Raveh, T.2
Barakat, M.T.3
-
80
-
-
50449084075
-
Pathological responses to oncogenic hedgehog signaling in skin are dependent on canonical Wnt beta3-catenin signaling
-
Yang SH, Andl T, Grachtchouk V, et al. Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/beta3- catenin signaling. Nat Genet 2008;40:1130-5
-
(2008)
Nat. Genet
, vol.40
, pp. 1130-1135
-
-
Yang, S.H.1
Andl, T.2
Grachtchouk, V.3
-
81
-
-
33947254016
-
Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: A new paradigm for combination therapy in solid cancers
-
DOI 10.1158/0008-5472.CAN-06-3281
-
Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 2007;67:2187-96 (Pubitemid 46424238)
-
(2007)
Cancer Research
, vol.67
, Issue.5
, pp. 2187-2196
-
-
Feldmann, G.1
Dhara, S.2
Fendrich, V.3
Bedja, D.4
Beaty, R.5
Mullendore, M.6
Karikari, C.7
Alvarez, H.8
Iacobuzio-Donahue, C.9
Jimeno, A.10
Gabrielson, K.L.11
Matsui, W.12
Maitra, A.13
-
82
-
-
52649169761
-
Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer
-
Feldmann G, Habbe N, Dhara S, et al. Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut 2008;57:1420-30
-
(2008)
Gut
, vol.57
, pp. 1420-1430
-
-
Feldmann, G.1
Habbe, N.2
Dhara, S.3
-
83
-
-
67149143399
-
Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer
-
Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 2009;324:1457-61
-
(2009)
Science
, vol.324
, pp. 1457-1461
-
-
Olive, K.P.1
Jacobetz, M.A.2
Davidson, C.J.3
-
84
-
-
65249147725
-
Ligand-dependent notch signaling is involved in tumor initiation and tumor maintenance in pancreatic cancer
-
Mullendore ME, Koorstra JB, Li YM, et al. Ligand-dependent Notch signaling is involved in tumor initiation and tumor maintenance in pancreatic cancer. Clin Cancer Res 2009;15:2291-301
-
(2009)
Clin. Cancer Res.
, vol.15
, pp. 2291-2301
-
-
Mullendore, M.E.1
Koorstra, J.B.2
Li, Y.M.3
-
85
-
-
74949135901
-
Targeting notch signaling in pancreatic cancer patients-rationale for new therapy
-
Mysliwiec P, Boucher MJ. Targeting Notch signaling in pancreatic cancer patients - rationale for new therapy. Adv Med Sci 2009;54:136-42
-
(2009)
Adv. Med. Sci.
, vol.54
, pp. 136-142
-
-
Mysliwiec, P.1
Boucher, M.J.2
-
86
-
-
18944375734
-
Role of notch signaling in cell-fate determination of human mammary stem progenitor cells
-
Dontu G, Jackson KW, McNicholas E, et al. Role of Notch signaling in cell-fate determination of human mammary stem/ progenitor cells. Breast Cancer Res 2004;6:R605-15
-
(2004)
Breast. Cancer Res.
, vol.6
-
-
Dontu, G.1
Jackson, K.W.2
McNicholas, E.3
-
87
-
-
38649140167
-
Notch signaling is required for exocrine regeneration after acute pancreatitis
-
Siveke JT, Lubeseder-Martellato C, Lee M, et al. Notch signaling is required for exocrine regeneration after acute pancreatitis. Gastroenterology 2008;134:544-55
-
(2008)
Gastroenterology
, vol.134
, pp. 544-555
-
-
Siveke, J.T.1
Lubeseder-Martellato, C.2
Lee, M.3
-
88
-
-
65549141305
-
Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway
-
Wang Z, Li Y, Kong D, et al. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res 2009;69:2400-7
-
(2009)
Cancer Res.
, vol.69
, pp. 2400-2407
-
-
Wang, Z.1
Li, Y.2
Kong, D.3
-
89
-
-
33645049305
-
Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB vascular endothelial growth factor and matrix metalloproteinase-9 in pancreatic cancer cells
-
Wang Z, Banerjee S, Li Y, et al. Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res 2006;66:2778-84
-
(2006)
Cancer Res.
, vol.66
, pp. 2778-2784
-
-
Wang, Z.1
Banerjee, S.2
Li, Y.3
-
90
-
-
33747885206
-
Epidermal growth factor receptor-related protein inhibits cell growth and invasion in pancreatic cancer
-
DOI 10.1158/0008-5472.CAN-06-1019
-
Wang Z, Sengupta R, Banerjee S, et al. Epidermal growth factor receptor-related protein inhibits cell growth and invasion in pancreatic cancer. Cancer Res 2006;66:7653-60 (Pubitemid 44289223)
-
(2006)
Cancer Research
, vol.66
, Issue.15
, pp. 7653-7660
-
-
Wang, Z.1
Sengupta, R.2
Banerjee, S.3
Li, Y.4
Zhang, Y.5
Wahidur Rahman, K.M.6
Aboukameel, A.7
Mohammad, R.8
Majumdar, A.P.N.9
Abbruzzese, J.L.10
Sarkar, F.H.11
-
91
-
-
34248178375
-
Inhibition of angiogenesis and invasion by 3,3′-diindolylmethane is mediated by the NF-κB downstream target genes MMP-9 and uPA that regulated bioavailability of VEGF in prostate cancer
-
DOI 10.1158/0008-5472.CAN-06-4277
-
Kong D, Li Y, Wang Z, et al. Inhibition of angiogenesis and invasion by 3,3'-diindolylmethane is mediated by the nuclear factor-kappaB downstream target genes MMP-9 and uPA that regulated bioavailability of vascular endothelial growth factor in prostate cancer. Cancer Res 2007;67:3310-19 (Pubitemid 46724870)
-
(2007)
Cancer Research
, vol.67
, Issue.7
, pp. 3310-3319
-
-
Kong, D.1
Li, Y.2
Wang, Z.3
Banerjee, S.4
Sarkar, F.H.5
-
92
-
-
79951617234
-
Therapeutic intervention for alzheimers disease with gamma-secretase inhibitors: Still a viable option
-
Imbimbo BP, Panza F, Frisardi V, et al. Therapeutic intervention for Alzheimer's disease with gamma-secretase inhibitors: still a viable option? Expert Opin Investig Drugs 2011;20:325-41
-
(2011)
Expert Opin Investig Drugs
, vol.20
, pp. 325-341
-
-
Imbimbo, B.P.1
Panza, F.2
Frisardi, V.3
-
93
-
-
77956419098
-
Review: Gamma-secretase inhibitors for the treatment of alzheimers disease: The current state
-
Panza F, Frisardi V, Imbimbo BP, et al. Review: gamma-Secretase inhibitors for the treatment of Alzheimer's disease: the current state. CNS Neurosci Ther 2010;16:272-84
-
(2010)
CNS Neurosci. Ther.
, vol.16
, pp. 272-284
-
-
Panza, F.1
Frisardi, V.2
Imbimbo, B.P.3
-
94
-
-
0036234459
-
Missing pieces in the NF-kappaB puzzle
-
Suppl
-
Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell 2002;109(Suppl):S81-96
-
(2002)
Cell.
, vol.109
-
-
Ghosh, S.1
Karin, M.2
-
95
-
-
0036546501
-
NF-κB in cancer: From innocent bystander to major culprit
-
Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002;2:301-10 (Pubitemid 37328783)
-
(2002)
Nature Reviews Cancer
, vol.2
, Issue.4
, pp. 301-310
-
-
Karin, M.1
Cao, Y.2
Greten, F.R.3
Li, Z.-W.4
-
96
-
-
0036781052
-
NF-kappaB regulation in the immune system
-
Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002;2:725-34
-
(2002)
Nat. Rev. Immunol.
, vol.2
, pp. 725-734
-
-
Li, Q.1
Verma, I.M.2
-
97
-
-
33846694768
-
NF-kappaB as a target for cancer therapy
-
Melisi D, Chiao PJ. NF-kappaB as a target for cancer therapy. Expert OpinTher Targets 2007;11:133-44
-
(2007)
Expert OpinTher Targets
, vol.11
, pp. 133-144
-
-
Melisi, D.1
Chiao, P.J.2
-
98
-
-
1942469354
-
Identification of an Autoregulatory Feedback Pathway Involving Interleukin-1α in Induction of Constitutive NF-κB Activation in Pancreatic Cancer Cells
-
DOI 10.1074/jbc.M309789200
-
Niu J, Li Z, Peng B, Chiao PJ. Identification of an autoregulatory feedback pathway involving interleukin-1alpha in induction of constitutive NF-kappaB activation in pancreatic cancer cells. J Biol Chem 2004;279:16452-62 (Pubitemid 38509343)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.16
, pp. 16452-16462
-
-
Niu, J.1
Li, Z.2
Peng, B.3
Chiao, P.J.4
-
99
-
-
0034084163
-
Phosphorylation meets ubiquitination: The control of NF-κB activity
-
DOI 10.1146/annurev.immunol.18.1.621
-
Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-kappaB activity. Annu Rev Immunol 2000;18:621-63 (Pubitemid 30365393)
-
(2000)
Annual Review of Immunology
, vol.18
, pp. 621-663
-
-
Karin, M.1
Ben-Neriah, Y.2
-
100
-
-
10744225575
-
Mechanisms of proinflammatory cytokine-induced biphasic NF-κB activation
-
DOI 10.1016/S1097-2765(03)00390-3
-
Schmidt C, Peng B, Li Z, et al. Mechanisms of proinflammatory cytokine-induced biphasic NF-kappaB activation. Mol Cell 2003;12:1287-300 (Pubitemid 37487935)
-
(2003)
Molecular Cell
, vol.12
, Issue.5
, pp. 1287-1300
-
-
Schmidt, C.1
Peng, B.2
Li, Z.3
Sclabas, G.M.4
Fujioka, S.5
Niu, J.6
Schmidt-Supprian, M.7
Evans, D.B.8
Abbruzzese, J.L.9
Chiao, P.J.10
-
101
-
-
0036144763
-
Regulatory functions of ubiquitination in the immune system
-
DOI 10.1038/ni0102-20
-
Ben-Neriah Y. Regulatory functions of ubiquitination in the immune system. Nat Immunol 2002;3:20-6 (Pubitemid 34065613)
-
(2002)
Nature Immunology
, vol.3
, Issue.1
, pp. 20-26
-
-
Ben-Neriah, Y.1
-
102
-
-
0036009115
-
NF-kappaB at the crossroads of life and death
-
Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol 2002;3:221-7
-
(2002)
Nat. Immunol.
, vol.3
, pp. 221-227
-
-
Karin, M.1
Lin, A.2
-
103
-
-
17944378526
-
Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway
-
DOI 10.1126/science.1062677
-
Senftleben U, Cao Y, Xiao G, et al. Activation by IKKalpha of a second, evolutionary conserved, NF-kappaB signaling pathway. Science 2001;293:1495-9 (Pubitemid 32801552)
-
(2001)
Science
, vol.293
, Issue.5534
, pp. 1495-1499
-
-
Senftleben, U.1
Cao, Y.2
Xiao, G.3
Greten, F.R.4
Krahn, G.5
Bonizzi, G.6
Chen, Y.7
Hu, Y.8
Fong, A.9
Sun, S.-C.10
Karin, M.11
-
104
-
-
0037242595
-
Function of nuclear factor κB in pancreatic cancer metastasis
-
Fujioka S, Sclabas GM, Schmidt C, et al. Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res 2003;9:346-54 (Pubitemid 36109751)
-
(2003)
Clinical Cancer Research
, vol.9
, Issue.1
, pp. 346-354
-
-
Fujioka, S.1
Sclabas, G.M.2
Schmidt, C.3
Frederick, W.A.4
Dong, Q.G.5
Abbruzzese, J.L.6
Evans, D.B.7
Baker, C.8
Chiao, P.J.9
-
105
-
-
0037422205
-
Inhibition of constitutive NF-κB activity by IκBαM suppresses tumorigenesis
-
DOI 10.1038/sj.onc.1206323
-
Fujioka S, Sclabas GM, Schmidt C, et al. Inhibition of constitutive NF-kappaB activity by IkappaBalphaM suppresses tumorigenesis. Oncogene 2003;22:1365-70 (Pubitemid 36384598)
-
(2003)
Oncogene
, vol.22
, Issue.9
, pp. 1365-1370
-
-
Fujioka, S.1
Sclabas, G.M.2
Schmidt, C.3
Niu, J.4
Frederick, W.A.5
Dong, Q.G.6
Abbruzzese, J.L.7
Evans, D.B.8
Baker, C.9
Chiao, P.J.10
-
106
-
-
66349109431
-
Secreted interleukin-1alpha induces a metastatic phenotype in pancreatic cancer by sustaining a constitutive activation of nuclear factor-kappaB
-
Melisi D, Niu J, Chang Z, et al. Secreted interleukin-1alpha induces a metastatic phenotype in pancreatic cancer by sustaining a constitutive activation of nuclear factor-kappaB. Mol Cancer Res 2009;7:624-33
-
(2009)
Mol. Cancer Res
, vol.7
, pp. 624-633
-
-
Melisi, D.1
Niu, J.2
Chang, Z.3
-
107
-
-
0034744949
-
NF-κB and cell-cycle regulation: The cyclin connection
-
DOI 10.1016/S1359-6101(00)00018-6, PII S1359610100000186
-
Joyce D, Albanese C, Steer J, et al. NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev 2001;12:73-90 (Pubitemid 32294588)
-
(2001)
Cytokine and Growth Factor Reviews
, vol.12
, Issue.1
, pp. 73-90
-
-
Joyce, D.1
Albanese, C.2
Steer, J.3
Fu, M.4
Bouzahzah, B.5
Pestell, R.G.6
-
108
-
-
0035137882
-
Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB
-
Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 2001;107:241-6 (Pubitemid 32157954)
-
(2001)
Journal of Clinical Investigation
, vol.107
, Issue.3
, pp. 241-246
-
-
Baldwin, A.S.1
-
109
-
-
0024292722
-
Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes
-
Almoguera C, Shibata D, Forrester K, et al. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988;53:549-54
-
(1988)
Cell.
, vol.53
, pp. 549-554
-
-
Almoguera, C.1
Shibata, D.2
Forrester, K.3
-
111
-
-
70449091786
-
Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1
-
Barbie DA, Tamayo P, Boehm JS, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 2009;462:108-12
-
(2009)
Nature
, vol.462
, pp. 108-112
-
-
Barbie, D.A.1
Tamayo, P.2
Boehm, J.S.3
-
112
-
-
33645999706
-
NF-kappaB and IKK as therapeutic targets in cancer
-
Kim HJ, Hawke N, Baldwin AS. NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ 2006;13:738-47
-
(2006)
Cell. Death Differ
, vol.13
, pp. 738-747
-
-
Kim, H.J.1
Hawke, N.2
Baldwin, A.S.3
-
113
-
-
33646488626
-
NF-kappaB inhibition: A double-edged sword in cancer
-
Pikarsky E, Ben-Neriah Y. NF-kappaB inhibition: a double-edged sword in cancer? Eur J Cancer 2006;42:779-84
-
(2006)
Eur. J. Cancer
, vol.42
, pp. 779-784
-
-
Pikarsky, E.1
Ben-Neriah, Y.2
-
114
-
-
1542328234
-
The IKK/NF-κB activation pathway - A target for prevention and treatment of cancer
-
DOI 10.1016/j.canlet.2003.08.029, PII S0304383503006293
-
Greten FR, Karin M. The IKK/ NF-kappaB activation pathway-a target for prevention and treatment of cancer. Cancer Lett 2004;206:193-9 (Pubitemid 38317289)
-
(2004)
Cancer Letters
, vol.206
, Issue.2
, pp. 193-199
-
-
Greten, F.R.1
Karin, M.2
-
115
-
-
33749051213
-
Can NF-κB be a target for novel and efficient anti-cancer agents?
-
DOI 10.1016/j.bcp.2006.07.023, PII S0006295206004746
-
Olivier S, Robe P, Bours V. Can NF-kappaB be a target for novel and efficient anti-cancer agents? Biochem Pharmacol 2006;72:1054-68 (Pubitemid 44465845)
-
(2006)
Biochemical Pharmacology
, vol.72
, Issue.9 SPEC. ISS.
, pp. 1054-1068
-
-
Olivier, S.1
Robe, P.2
Bours, V.3
-
116
-
-
33750446341
-
Inhibitors of NF-κB signaling: 785 and counting
-
DOI 10.1038/sj.onc.1209982, PII 1209982
-
Gilmore TD, Herscovitch M. Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene 2006;25:6887-99 (Pubitemid 44657858)
-
(2006)
Oncogene
, vol.25
, Issue.51
, pp. 6887-6899
-
-
Gilmore, T.D.1
Herscovitch, M.2
-
117
-
-
39749093836
-
Superiority of extended neoadjuvant chemotherapy with gemcitabine in pancreatic cancer: A comparative analysis in a clinically adapted orthotopic xenotransplantation model in SCID beige mice
-
Egberts JH, Schniewind B, Sipos B, et al. Superiority of extended neoadjuvant chemotherapy with gemcitabine in pancreatic cancer: a comparative analysis in a clinically adapted orthotopic xenotransplantation model in SCID beige mice. Cancer Biol Ther 2007;6:1227-32 (Pubitemid 351590376)
-
(2007)
Cancer Biology and Therapy
, vol.6
, Issue.8
, pp. 1227-1232
-
-
Egberts, J.-H.1
Schniewind, B.2
Sipos, B.3
Hinz, S.4
Kalthoff, H.5
Tepel, J.6
-
118
-
-
33746352042
-
Adjuvant treatment of pancreatic carcinoma in a clinically adapted mouse resection model
-
DOI 10.1159/000092027
-
Tepel J, Kruse ML, Kapischke M, et al. Adjuvant treatment of pancreatic carcinoma in a clinically adapted mouse resection model. Pancreatology 2006;6:240-7 (Pubitemid 44114494)
-
(2006)
Pancreatology
, vol.6
, Issue.3
, pp. 240-247
-
-
Tepel, J.1
Kruse, M.-L.2
Kapischke, M.3
Haye, S.4
Sipos, B.5
Kremer, B.6
Kalthoff, H.7
-
120
-
-
34547101441
-
Gemcitabine-based combinations for inoperable pancreatic cancer: Have we made real progress? A meta-analysis of 20 phase 3 trials
-
DOI 10.1002/cncr.22809
-
Bria E, Milella M, Gelibter A, et al. Gemcitabine-based combinations for inoperable pancreatic cancer: have we made real progress? A meta-analysis of 20 Phase 3 trials. Cancer 2007;110:525-33 (Pubitemid 47106140)
-
(2007)
Cancer
, vol.110
, Issue.3
, pp. 525-533
-
-
Bria, E.1
Milella, M.2
Gelibter, A.3
Cuppone, F.4
Pino, M.S.5
Ruggeri, E.M.6
Carlini, P.7
Nistico, C.8
Terzoli, E.9
Cognetti, F.10
Giannarelli, D.11
-
121
-
-
26444574802
-
Development of farnesyl transferase inhibitors: A review
-
DOI 10.1634/theoncologist.10-8-565
-
Appels NM, Beijnen JH, Schellens JH. Development of farnesyl transferase inhibitors: a review. Oncologist 2005;10:565-78 (Pubitemid 41429120)
-
(2005)
Oncologist
, vol.10
, Issue.8
, pp. 565-578
-
-
Appels, N.M.G.M.1
Beijnen, J.H.2
Schellens, J.H.M.3
-
122
-
-
67949117222
-
Targeting targeted agents: Open issues for clinical trial design
-
Bria E, Di Maio M, Carlini P, et al. Targeting targeted agents: open issues for clinical trial design. J Exp Clin Cancer Res 2009;28:66
-
(2009)
J. Exp. Clin. Cancer Res.
, vol.28
, pp. 66
-
-
Bria, E.1
Di Maio, M.2
Carlini, P.3
|