메뉴 건너뛰기




Volumn , Issue , 2011, Pages 2633-2640

Comparing data-dependent and data-independent embeddings for classification and ranking of Internet images

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE CLASSIFICATION; SUPERVISED LEARNING;

EID: 80052885911     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2011.5995619     Document Type: Conference Paper
Times cited : (12)

References (23)
  • 1
    • 85156243206 scopus 로고    scopus 로고
    • Using manifold structure for partially labelled classification
    • M. Belkin and P. Niyogi. Using manifold structure for partially labelled classification. NIPS, 2002.
    • (2002) NIPS
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 80052876786 scopus 로고    scopus 로고
    • What does classifying more than 10, 000 image categories tell us?
    • J. Deng, A. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10, 000 image categories tell us? ECCV, 2010.
    • (2010) ECCV
    • Deng, J.1    Berg, A.2    Li, K.3    Fei-Fei, L.4
  • 7
    • 77955655063 scopus 로고    scopus 로고
    • Semi-supervised learning in gigantic image collections
    • R. Fergus, A. Torralba, and Y. Weiss. Semi-supervised learning in gigantic image collections. NIPS, 2009.
    • (2009) NIPS
    • Fergus, R.1    Torralba, A.2    Weiss, Y.3
  • 8
    • 0742286179 scopus 로고    scopus 로고
    • Spectral grouping using the Nyström method
    • C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the Nyström method. PAMI, 26(2):214-225, 2004.
    • (2004) PAMI , vol.26 , Issue.2 , pp. 214-225
    • Fowlkes, C.1    Belongie, S.2    Chung, F.3    Malik, J.4
  • 9
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1):55-67, 1970.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 12
    • 38149062545 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing
    • S. Lazebnik, S. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing. CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, S.2    Ponce, J.3
  • 13
    • 80052894868 scopus 로고    scopus 로고
    • Max-margin additive classifiers for detection
    • S. Maji and A. Berg. Max-margin additive classifiers for detection. CVPR, 2009.
    • (2009) CVPR
    • Maji, S.1    Berg, A.2
  • 14
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV, 2001.
    • (2001) IJCV
    • Oliva, A.1    Torralba, A.2
  • 15
    • 77956008923 scopus 로고    scopus 로고
    • Large-scale image categorization with explicit data embedding
    • F. Perronnin, J. Sanchez, and Y. Liu. Large-scale image categorization with explicit data embedding. CVPR, 2010.
    • (2010) CVPR
    • Perronnin, F.1    Sanchez, J.2    Liu, Y.3
  • 16
    • 77953218689 scopus 로고    scopus 로고
    • Random features for large-scale kernel machines
    • A. Rahimi and B. Recht. Random features for large-scale kernel machines. NIPS, 2007.
    • (2007) NIPS
    • Rahimi, A.1    Recht, B.2
  • 19
    • 80052887631 scopus 로고    scopus 로고
    • Data spectroscopy: Eigenspaces of convolution operators and clustering
    • T. Shi and M. Belkin. Data spectroscopy: Eigenspaces of convolution operators and clustering. Annal of Statistics, 2010.
    • (2010) Annal of Statistics
    • Shi, T.1    Belkin, M.2
  • 21
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: A large dataset for non-parametric object and scene recognition
    • A. Torralba, R. Fergus, and W. Freenman. 80 million tiny images: a large dataset for non-parametric object and scene recognition. PAMI, 2008.
    • (2008) PAMI
    • Torralba, A.1    Fergus, R.2    Freenman, W.3
  • 22
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395-416, 2007.
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Von Luxburg, U.1
  • 23
    • 0000350486 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • C. K. I. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In NIPS, pages 682-688, 2000.
    • (2000) NIPS , pp. 682-688
    • Williams, C.K.I.1    Seeger, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.