메뉴 건너뛰기




Volumn 11, Issue 1, 2007, Pages 87-95

An Incremental Neural Network for Online Supervised Learning and Topology Learning

Author keywords

incremental; online supervised learning; self organizing; topology learning

Indexed keywords

E-LEARNING; TOPOLOGY;

EID: 80052800199     PISSN: 13430130     EISSN: 18838014     Source Type: Journal    
DOI: 10.20965/jaciii.2007.p0087     Document Type: Article
Times cited : (1)

References (18)
  • 2
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method
    • L. P. Li, C. R. Weinberg, T. A. Darden, and L. G. Pedersen, “Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method,” Bioinformatics, Vol.17, No.12, pp. 1131-1142, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.12 , pp. 1131-1142
    • Li, L. P.1    Weinberg, C. R.2    Darden, T. A.3    Pedersen, L. G.4
  • 3
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Y. Freund and R. E. Schapire, “A decision-theoretic generalization of online learning and an application to boosting,” Journal of Computer and System Sciences, Vol.55, No.1, pp. 119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R. E.2
  • 7
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • T. Kohonen, “Self-organized formation of topologically correct feature maps,” Biological Cybernetics, Vol.43, pp. 59-69, 1982.
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 8
    • 0036193080 scopus 로고    scopus 로고
    • A methodology to explain neural network classification
    • R. Feraud and R. Clerot, “A methodology to explain neural network classification,” Neural Networks, Vol.15, No.2, pp. 237-246, 2002.
    • (2002) Neural Networks , vol.15 , Issue.2 , pp. 237-246
    • Feraud, R.1    Clerot, R.2
  • 9
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • T.M. Cover and P.E. Hart, “Nearest neighbor pattern classification,” IEEE Trans. on Information Theory, Vol.IT-13, No.1, pp. 21-27, 1967.
    • (1967) IEEE Trans. on Information Theory , vol.IT-13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 10
    • 85166925296 scopus 로고    scopus 로고
    • K-D decision tree: An accelerated and memory efficient nearest neighbor classifier
    • T. Shibata, T. Kato, and T. Wada, “K-D decision tree: An accelerated and memory efficient nearest neighbor classifier,” MIRU2004.
    • (2004) MIRU
    • Shibata, T.1    Kato, T.2    Wada, T.3
  • 11
    • 0028385080 scopus 로고
    • Minimal consistent set (MCS) identification for optimal nearest neighbor decision systems design
    • B. V. Dasarathy, “Minimal consistent set (MCS) identification for optimal nearest neighbor decision systems design,” IEEE Trans. Syst. Man Cybern., Vol.24, No.3, pp. 511-517, 1994.
    • (1994) IEEE Trans. Syst. Man Cybern , vol.24 , Issue.3 , pp. 511-517
    • Dasarathy, B. V.1
  • 12
    • 0015346497 scopus 로고
    • The reduced nearest neighbor rule
    • G. W. Gates, “The reduced nearest neighbor rule,” IEEE Trans. Inf. Theory, Vol.IT-18, No.3, pp. 431-433, 1972.
    • (1972) IEEE Trans. Inf. Theory , vol.IT-18 , Issue.3 , pp. 431-433
    • Gates, G. W.1
  • 16
    • 0001132486 scopus 로고
    • Competitive Hebbian learning rule forms perfectly topology preserving maps
    • T. M. Martinetz, “Competitive Hebbian learning rule forms perfectly topology preserving maps,” ICANN, pp. 427-434, 1993.
    • (1993) ICANN , pp. 427-434
    • Martinetz, T. M.1
  • 17
    • 0003408496 scopus 로고    scopus 로고
    • UCI repository of machine learning databases, Irvine, CA
    • University of California Department of Information
    • C. Merz and M. Murphy, “UCI repository of machine learning databases, Irvine, CA,” University of California Department of Information, 1996. http://www.ics.uci.edu/̴mlearn/MLRepository.html
    • (1996)
    • Merz, C.1    Murphy, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.