메뉴 건너뛰기




Volumn 67, Issue 3, 2011, Pages 917-925

Bayesian Variable Selection for Latent Class Models

Author keywords

Bayesian model averaging; Finite mixture model; Markov chain Monte Carlo; Multinomial logit model; Variable selection

Indexed keywords

BAYESIAN NETWORKS; MARKOV PROCESSES; STOCHASTIC MODELS;

EID: 80052793612     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2010.01502.x     Document Type: Article
Times cited : (13)

References (32)
  • 4
    • 51749087485 scopus 로고    scopus 로고
    • Dietary energy density but not glycemic load is associated with gestational weight gain
    • Deierlein, A. L., Siega-Riz, A. M., and Herring, A. (2008). Dietary energy density but not glycemic load is associated with gestational weight gain. American Journal of Clinical Nutrition 88, 693-699.
    • (2008) American Journal of Clinical Nutrition , vol.88 , pp. 693-699
    • Deierlein, A.L.1    Siega-Riz, A.M.2    Herring, A.3
  • 7
    • 21644459666 scopus 로고    scopus 로고
    • Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction
    • Elliott, M. R., Gallo, J. J., Ten Have, T. R., Bogner, H. R., and Katz, I. R. (2005). Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction. Biostatistics 6, 119-143.
    • (2005) Biostatistics , vol.6 , pp. 119-143
    • Elliott, M.R.1    Gallo, J.J.2    Ten Have, T.R.3    Bogner, H.R.4    Katz, I.R.5
  • 12
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: From importance sampling to bridge sampling to path sampling
    • Gelman, A. and Meng, X.-L. (1998). Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science 13, 163-185.
    • (1998) Statistical Science , vol.13 , pp. 163-185
    • Gelman, A.1    Meng, X.-L.2
  • 14
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 15
    • 78349273835 scopus 로고    scopus 로고
    • Bayesian multinomial regression with class-specific predictor selection
    • Gustafson, P. and Lefebvre, G. (2008). Bayesian multinomial regression with class-specific predictor selection. The Annals of Applied Statistics 2, 1478-1502.
    • (2008) The Annals of Applied Statistics , vol.2 , pp. 1478-1502
    • Gustafson, P.1    Lefebvre, G.2
  • 16
    • 84867151416 scopus 로고    scopus 로고
    • Bayesian auxiliary variable models for binary and multinomial regression
    • Holmes, C. C. and Held, L. (2006). Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis 1, 145-168.
    • (2006) Bayesian Analysis , vol.1 , pp. 145-168
    • Holmes, C.C.1    Held, L.2
  • 17
    • 0003419160 scopus 로고
    • Institute of Medicine. (). Washington, DC: National Academy Press.
    • Institute of Medicine. (1990). Nutrition During Pregnancy. Part I, Weight Gain. Washington, DC: National Academy Press.
    • (1990) Nutrition During Pregnancy. Part I, Weight Gain
  • 19
    • 22544479764 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling
    • Jasra, A., Holmes, C. C., and Stephens, D. A. (2005). Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science 20, 50-67.
    • (2005) Statistical Science , vol.20 , pp. 50-67
    • Jasra, A.1    Holmes, C.C.2    Stephens, D.A.3
  • 21
    • 34548381836 scopus 로고    scopus 로고
    • Fixed and random effects selection in linear and logistic models
    • Kinney, S. and Dunson, D. (2007). Fixed and random effects selection in linear and logistic models. Biometrics 63, 690-698.
    • (2007) Biometrics , vol.63 , pp. 690-698
    • Kinney, S.1    Dunson, D.2
  • 22
    • 4444363400 scopus 로고    scopus 로고
    • Bayesian multivariate logistic regression
    • O'Brien, S. M. and Dunson, D. B. (2004). Bayesian multivariate logistic regression. Biometrics 60, 739-746.
    • (2004) Biometrics , vol.60 , pp. 739-746
    • O'Brien, S.M.1    Dunson, D.B.2
  • 23
    • 0037306459 scopus 로고    scopus 로고
    • Bayesian inference and model selection in latent class logit models with parameter constraints: An application to market segmentation
    • Oh, M.-S., Choi, J. W., and Kim, D.-G. (2003). Bayesian inference and model selection in latent class logit models with parameter constraints: An application to market segmentation. Journal of Applied Statistics 30, 191-204.
    • (2003) Journal of Applied Statistics , vol.30 , pp. 191-204
    • Oh, M.-S.1    Choi, J.W.2    Kim, D.-G.3
  • 27
    • 0038006366 scopus 로고    scopus 로고
    • Bayesian growth curves using normal mixtures with nonparametric weights
    • Scaccia, L. and Green, P. (2003). Bayesian growth curves using normal mixtures with nonparametric weights. Journal of Computational and Graphical Statistics 12, 308-331.
    • (2003) Journal of Computational and Graphical Statistics , vol.12 , pp. 308-331
    • Scaccia, L.1    Green, P.2
  • 28
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461-464.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 29
    • 77953071298 scopus 로고    scopus 로고
    • Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem
    • Scott, J. G. and Berger, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. Annals of Statistics, 38, 2857-2619.
    • (2010) Annals of Statistics , vol.38 , pp. 2857-2619
    • Scott, J.G.1    Berger, J.O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.