메뉴 건너뛰기




Volumn 45, Issue 1, 2012, Pages 66-79

A novel SVM+NDA model for classification with an application to face recognition

Author keywords

Face recognition; Kernel NDA and SVM; Linear discriminant analysis (LDA); Nonparametric discriminant analysis (NDA); Small sample size problem; Support vector machines (SVM)

Indexed keywords

KERNEL NDA AND SVM; LINEAR DISCRIMINANT ANALYSIS; NONPARAMETRIC DISCRIMINANT ANALYSIS (NDA); SMALL SAMPLE SIZE PROBLEMS; SUPPORT VECTOR;

EID: 80052735710     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.05.004     Document Type: Article
Times cited : (83)

References (33)
  • 1
    • 36948999941 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • A. Asuncion, D.J. Newman, UCI machine learning repository, University of California, Irvine, School of Information and Computer Sciences, 2007.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 3
    • 70350668632 scopus 로고    scopus 로고
    • Yale University, Center for Computational Vision and Control
    • A.S. Georghiades, Yale face database, Yale University, Center for Computational Vision and Control, 1997.
    • (1997) Yale Face Database
    • Georghiades, A.S.1
  • 6
    • 33144465195 scopus 로고    scopus 로고
    • Nonlinear discriminant analysis using kernel functions and the generalized singular value decomposition
    • C.H. Park, and H. Park Nonlinear discriminant analysis using kernel functions and the generalized singular value decomposition SIAM Journal on Matrix Analysis and Application 27 1 2005 98 102
    • (2005) SIAM Journal on Matrix Analysis and Application , vol.27 , Issue.1 , pp. 98-102
    • Park, C.H.1    Park, H.2
  • 7
    • 0034296402 scopus 로고    scopus 로고
    • Generalized discriminant analysis using kernel approach
    • G. Baudat, and B. Anouar Generalized discriminant analysis using kernel approach Neural Computation 2000 2385 2404
    • (2000) Neural Computation , pp. 2385-2404
    • Baudat, G.1    Anouar, B.2
  • 8
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • DOI 10.1023/A:1007618119488
    • G. Ratsch, T. Onoda, and K.R. Muller Soft margins for adaboost Machine Learning 42 3 2000 287 320 (Pubitemid 32188795)
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 287-320
    • Ratsch, G.1    Onoda, T.2    Muller, K.-R.3
  • 10
    • 0001765951 scopus 로고    scopus 로고
    • A direct LDA algorithm for high-dimensional data with application to face recognition
    • H. Yu, and J. Yang A direct LDA algorithm for high-dimensional data with application to face recognition Pattern Recognition 34 2001 2067 2070
    • (2001) Pattern Recognition , vol.34 , pp. 2067-2070
    • Yu, H.1    Yang, J.2
  • 14
    • 0006497285 scopus 로고    scopus 로고
    • Crescepton and SHOSLIF: Towards comprehensive visual learning
    • J.J. Weng, Crescepton and SHOSLIF: towards comprehensive visual learning, in: Early Visual Learning, 1996, pp. 183214.
    • (1996) Early Visual Learning , pp. 183-214
    • Weng, J.J.1
  • 16
    • 0016421071 scopus 로고
    • The estimation of the gradient of a density function, with applications in pattern recognition
    • K. Fukunaga, and L. Hostetler The estimation of the gradient of a density function, with applications in pattern recognition IEEE Transactions on Information Theory 21 1 1975 32 40
    • (1975) IEEE Transactions on Information Theory , vol.21 , Issue.1 , pp. 32-40
    • Fukunaga, K.1    Hostetler, L.2
  • 17
    • 80052692865 scopus 로고    scopus 로고
    • University of Essex, Computer Vision Science Research Projects
    • L. Spacek, Face recognition data, University of Essex, Computer Vision Science Research Projects, 2008.
    • (2008) Face Recognition Data
    • Spacek, L.1
  • 19
    • 3042673775 scopus 로고    scopus 로고
    • Linear dimensionality reduction via heteroscedastic extension of LDA: The Chernoff criterion
    • M. Loog, and R.P.W. Duin Linear dimensionality reduction via heteroscedastic extension of LDA: the Chernoff criterion IEEE Transactions on Pattern Analysis and Machine Intelligence 26 6 2004 732 739
    • (2004) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.26 , Issue.6 , pp. 732-739
    • Loog, M.1    Duin, R.P.W.2
  • 21
    • 80052705144 scopus 로고    scopus 로고
    • MathWorks ™, 2009
    • MathWorks ™, 2009.
  • 22
    • 0033352182 scopus 로고    scopus 로고
    • Automatic classification of single facial images
    • DOI 10.1109/34.817413
    • M.J. Lyons, J. Budynek, and S. Akamatsu Automatic classification of single facial images IEEE Transactions on Pattern Analysis and Machine Intelligence 21 12 1999 1357 1362 (Pubitemid 30568926)
    • (1999) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.21 , Issue.12 , pp. 1357-1362
    • Lyons, M.J.1
  • 23
    • 14644404956 scopus 로고    scopus 로고
    • Iterative projected clustering by subspace mining
    • DOI 10.1109/TKDE.2005.29
    • M.L. Yiu, and N. Mamoulis Iterative projected clustering by subspace mining IEEE Transactions on Knowledge and Data Engineering 17 2 2005 176 189 (Pubitemid 40320177)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.2 , pp. 176-189
    • Yiu, M.L.1    Mamoulis, N.2
  • 29
    • 33750126621 scopus 로고    scopus 로고
    • A combined SVM and LDA approach for classification
    • DOI 10.1109/IJCNN.2005.1556089, 1556089, Proceedings of the International Joint Conference on Neural Networks, IJCNN 2005
    • T. Xiong, and V. Cherkassky A combined SVM and LDA approach for classification Proceedings of the International Joint Conference on Neural Networks 2005 1455 1459 (Pubitemid 44591413)
    • (2005) Proceedings of the International Joint Conference on Neural Networks , vol.3 , pp. 1455-1459
    • Xiong, T.1    Cherkassky, V.2
  • 30
    • 0030493826 scopus 로고    scopus 로고
    • A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables
    • T.F. Coleman, and Y. Li A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables SIAM Journal on Optimization 6 4 1996 1040 1058
    • (1996) SIAM Journal on Optimization , vol.6 , Issue.4 , pp. 1040-1058
    • Coleman, T.F.1    Li, Y.2
  • 31
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • T.S. Lim, W.Y. Loh, and Y.S. Shih A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms Machine Learning 40 3 2000 203 228
    • (2000) Machine Learning , vol.40 , Issue.3 , pp. 203-228
    • Lim, T.S.1    Loh, W.Y.2    Shih, Y.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.