메뉴 건너뛰기




Volumn , Issue , 2011, Pages 787-794

2D-interval predictions for time series

Author keywords

Forecasting; Prediction; Time series

Indexed keywords

ARTIFICIAL INTELLIGENCE; ECONOMICS; ELECTRIC POWER GENERATION; WATER QUALITY; WEATHER FORECASTING; WIND POWER;

EID: 80052650517     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2020408.2020546     Document Type: Conference Paper
Times cited : (4)

References (21)
  • 2
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 3
    • 14344255817 scopus 로고    scopus 로고
    • Probabilistic wind power forecasts using local quantile regression
    • DOI 10.1002/we.107
    • J.B. Bremnes. Probabilistic wind power forecasts using local quantile regression. Wind Energy, 7(1):47-54, 2004. (Pubitemid 40290428)
    • (2004) Wind Energy , vol.7 , Issue.1 , pp. 47-54
    • Bremnes, J.B.1
  • 10
    • 84925105967 scopus 로고    scopus 로고
    • Econometric Society Monograph Series, Cambridge University Press
    • R. Koenker. Quantile Regression. Econometric Society Monograph Series. Cambridge University Press, 2005.
    • (2005) Quantile Regression
    • Koenker, R.1
  • 11
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomforest
    • A. Liaw and M. Wiener. Classification and regression by randomforest. R News, 2(3):18-22, 2002.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 15
    • 2642574503 scopus 로고    scopus 로고
    • R Development Core Team, R, R Foundation for Statistical Computing
    • R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2010.
    • (2010) A Language and Environment for Statistical Computing
  • 16
    • 0001658414 scopus 로고    scopus 로고
    • Density forecasting: A survey
    • A. S. Tay and K. F. Wallis. Density forecasting: a survey. Journal of Forecasting, 19(4):235-254, 2000.
    • (2000) Journal of Forecasting , vol.19 , Issue.4 , pp. 235-254
    • Tay, A.S.1    Wallis, K.F.2
  • 17
    • 33749526470 scopus 로고    scopus 로고
    • Density forecasting for the efficient balancing of the generation and consumption of electricity
    • DOI 10.1016/j.ijforecast.2006.02.001, PII S0169207006000227
    • J.W. Taylor. Density forecasting for the efficient balancing of the generation and consumption of electricity. International Journal of Forecasting, 22:707-724, 2006. (Pubitemid 44524716)
    • (2006) International Journal of Forecasting , vol.22 , Issue.4 , pp. 707-724
    • Taylor, J.W.1
  • 18
    • 70049094192 scopus 로고    scopus 로고
    • Wind power density forecasting using ensemble predictions and time series models
    • J.W. Taylor, P.E. McSharry, and R. Buizza. Wind power density forecasting using ensemble predictions and time series models. IEEE Transactions on Energy Conversion, 24:775-782, 2009.
    • (2009) IEEE Transactions on Energy Conversion , vol.24 , pp. 775-782
    • Taylor, J.W.1    McSharry, P.E.2    Buizza, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.