-
1
-
-
0002003776
-
Crossing-free subgraphs
-
M. AJTAI, V. CHVÁTAL, M. NEWBORN, AND E. SZEMERÉDI, Crossing-free subgraphs, Annals of Discrete Mathematics, 12 (1982), 9-12.
-
(1982)
Annals of Discrete Mathematics
, vol.12
, pp. 9-12
-
-
Ajtai, M.1
Chvátal, V.2
Newborn, M.3
Szemerédi, E.4
-
2
-
-
34250319355
-
Angular Voronoi diagram with applications
-
T. ASANO, N. KATOH, H. TAMAKI, AND T. TOKUYAMA, Angular Voronoi diagram with applications, Proc. 3rd Int. Symp. on Voronoi Diagrams in Science and Engineering, Banff, Canada, 32-39, 2006.
-
(2006)
Proc. 3rd Int. Symp. on Voronoi Diagrams in Science and Engineering, Banff, Canada
, pp. 32-39
-
-
Asano, T.1
Katoh, N.2
Tamaki, H.3
Tokuyama, T.4
-
3
-
-
47849117174
-
Voronoi diagrams with respect to criteria on vision information
-
T. ASANO, N. KATOH, H. TAMAKI, AND T. TOKUYAMA, Voronoi diagrams with respect to criteria on vision information, Proc. 4th Int. Symp. on Voronoi Diagrams in Science and Engineering, Pontypridd, Wales, UK, 25-32, 2007.
-
(2007)
Proc. 4th Int. Symp. on Voronoi Diagrams in Science and Engineering, Pontypridd, Wales, UK
, pp. 25-32
-
-
Asano, T.1
Katoh, N.2
Tamaki, H.3
Tokuyama, T.4
-
4
-
-
84976826673
-
Voronoi diagram - A survey of a fundamental geometric data structure
-
F. AURENHAMMER, Voronoi diagram - A survey of a fundamental geometric data structure, ACM Computing Surveys, 23 (1991), 345-405.
-
(1991)
ACM Computing Surveys
, vol.23
, pp. 345-405
-
-
Aurenhammer, F.1
-
5
-
-
84867948422
-
2-point site Voronoi diagrams
-
G. BAREQUET, M.T. DICKERSON, AND R.L.S. DRYSDALE, 2-point site Voronoi diagrams, Discrete Applied Mathematics, 122 (2002), 37-54.
-
(2002)
Discrete Applied Mathematics
, vol.122
, pp. 37-54
-
-
Barequet, G.1
Dickerson, M.T.2
Drysdale, R.L.S.3
-
6
-
-
84892318649
-
-
(3rd ed.), Springer-Verlag, Berlin
-
M. DE BERG, M. VAN KREVELD, M. OVERMARS, AND O. SCHWARZKOPF, Computational Geometry, Algorithms, and Applications (3rd ed.), Springer-Verlag, Berlin, 2008.
-
(2008)
Computational Geometry, Algorithms, and Applications
-
-
De Berg, M.1
Van Kreveld, M.2
Overmars, M.3
Schwarzkopf, O.4
-
7
-
-
70849107609
-
Animating a continuous family of two-site Voronoi diagrams (and a proof of a bound on the number of regions)
-
M.T. DICKERSON AND D. EPPSTEIN, Animating a continuous family of two-site Voronoi diagrams (and a proof of a bound on the number of regions), Proc. 25th ACM Symp. on Computational Geometry, Aarhus, Denmark, 92-93, 2009.
-
Proc. 25th ACM Symp. on Computational Geometry, Aarhus, Denmark, 92-93, 2009
-
-
Dickerson, M.T.1
Eppstein, D.2
-
9
-
-
77951473386
-
On the triangle-perimeter two-site Voronoi diagram
-
I. HANNIEL AND G. BAREQUET, On the triangle-perimeter two-site Voronoi diagram, Proc. 6th Int. Symp. on Voronoi Diagrams, Copenhagen, Denmark, 129-136, 2009.
-
(2009)
Proc. 6th Int. Symp. on Voronoi Diagrams, Copenhagen, Denmark
, pp. 129-136
-
-
Hanniel, I.1
Barequet, G.2
-
10
-
-
80052636224
-
-
M.Sc. Thesis, The Technion - Israel Inst. of Technology, Haifa, Israel
-
D. HODORKOVSKY, 2-Point Site Voronoi Diagrams, M.Sc. Thesis, The Technion - Israel Inst. of Technology, Haifa, Israel, 2005.
-
(2005)
2-Point Site Voronoi Diagrams
-
-
Hodorkovsky, D.1
-
11
-
-
0020141081
-
On k-nearest neighbor Voronoi diagrams in the plane
-
D.T. LEE, On k-nearest neighbor Voronoi diagrams in the plane, IEEE Trans. on Computers, 31 (1982), 478-487.
-
(1982)
IEEE Trans. on Computers
, vol.31
, pp. 478-487
-
-
Lee, D.T.1
-
13
-
-
0003483274
-
-
2nd ed., Wiley
-
A. OKABE, A. BOOTS, B. SUGIHARA, AND S.N. CHUI, Spatial Tesselations, 2nd ed., Wiley, 2000.
-
(2000)
Spatial Tesselations
-
-
Okabe, A.1
Boots, A.2
Sugihara, B.3
Chui, S.N.4
-
15
-
-
85063287628
-
Closest-point problems
-
M.I. SHAMOS AND D. HOEY, Closest-point problems, Proc. 16th Ann. IEEE Symp. on Foundations of Computer Science, Berkeley, CA, 151-162, 1975.
-
(1975)
Proc. 16th Ann. IEEE Symp. on Foundations of Computer Science, Berkeley, CA
, pp. 151-162
-
-
Shamos, M.I.1
Hoey, D.2
-
17
-
-
77955680961
-
On 2-site Voronoi diagrams under arithmetic combinations of point-to-point distances
-
K. VYATKINA AND G. BAREQUET, On 2-site Voronoi diagrams under arithmetic combinations of point-to-point distances, Proc. 7th Int. Symp. on Voronoi Diagrams, Québec City, Québec, Canada, 33-41, 2010.
-
Proc. 7th Int. Symp. on Voronoi Diagrams, Québec City, Québec, Canada, 33-41, 2010
-
-
Vyatkina, K.1
Barequet, G.2
|