메뉴 건너뛰기




Volumn 2, Issue , 2011, Pages 349-358

Nonparametric virtual sensors for semiconductor manufacturing: Using information theoretic learning and kernel machines

Author keywords

Entropy; Kernel methods; Machine learning; Semiconductors

Indexed keywords

DENSITY ESTIMATION; INFORMATION THEORETIC LEARNING; KERNEL MACHINE; KERNEL METHODS; LEARNING PROBLEM; LOSS FUNCTIONS; MACHINE-LEARNING; NON-GAUSSIAN; NON-PARAMETRIC; PREDICTIVE MODELS; PROBABILISTIC UNCERTAINTY; PROCESS DATA; RENYI'S ENTROPY; REPRODUCING KERNEL HILBERT SPACES; SEMICONDUCTOR MANUFACTURING; SEMICONDUCTOR MANUFACTURING INDUSTRY; SIMULATION STUDIES; VIRTUAL SENSOR;

EID: 80052569246     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1)

References (15)
  • 1
    • 77953139305 scopus 로고    scopus 로고
    • Fat tails, exponents, extreme uncertainty: Simulating catastrophe in DICE
    • Ackerman, F., Stanton, E., and Bueno, R. (2010). Fat tails, exponents, extreme uncertainty: Simulating catastrophe in DICE. Ecological Economics, 69(8):1657-1665.
    • (2010) Ecological Economics , vol.69 , Issue.8 , pp. 1657-1665
    • Ackerman, F.1    Stanton, E.2    Bueno, R.3
  • 2
    • 0012937447 scopus 로고    scopus 로고
    • Mode-finding for mixtures of Gaussian distributions
    • IEEE Transactions on
    • Carreira-Perpiñán, M. (2002). Mode-finding for mixtures of Gaussian distributions. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22(11):1318-1323.
    • (2002) Pattern Analysis and Machine Intelligence , vol.22 , Issue.11 , pp. 1318-1323
    • Carreira-Perpiñán, M.1
  • 3
    • 0036647905 scopus 로고    scopus 로고
    • An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems
    • DOI 10.1109/TSP.2002.1011217, PII S1053587X02056593
    • Erdogmus, D. and Principe, J. (2002). An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems. Signal Processing, IEEE Transactions on, 50(7):1780-1786. (Pubitemid 34882696)
    • (2002) IEEE Transactions on Signal Processing , vol.50 , Issue.7 , pp. 1780-1786
    • Erdogmus, D.1    Principe, J.C.2
  • 5
    • 85161148381 scopus 로고    scopus 로고
    • The elements of statistical learning: Data mining, inference and prediction
    • Hastie, T., Tibshirani, R., Friedman, J., and Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2):83-85.
    • (2005) The Mathematical Intelligencer , vol.27 , Issue.2 , pp. 83-85
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3    Franklin, J.4
  • 7
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen, E. (1962). On estimation of a probability density function and mode. The annals of mathematical statistics, 33(3):1065-1076.
    • (1962) The Annals of Mathematical Statistics , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 11
    • 0037114379 scopus 로고    scopus 로고
    • Neural virtual sensor for the inferential prediction of product quality from process variables
    • DOI 10.1016/S0098-1354(02)00148-5, PII S0098135402001485
    • Rallo, R., Ferre-Giné, J., Arenas, A., and Giralt, F. (2002). Neural virtual sensor for the inferential prediction of product quality from process variables. Computers & Chemical Engineering, 26(12):1735-1754. (Pubitemid 35303612)
    • (2002) Computers and Chemical Engineering , vol.26 , Issue.12 , pp. 1735-1754
    • Rallo, R.1    Ferre-Gine, J.2    Arenas, A.3    Giralt, F.4
  • 15
    • 38949115522 scopus 로고    scopus 로고
    • Virtual metrology and your technology watch list: Ten things you should know about this emerging technology
    • Weber, A. (2007). Virtual metrology and your technology watch list: ten things you should know about this emerging technology. Future Fab International, 22:52-54.
    • (2007) Future Fab International , vol.22 , pp. 52-54
    • Weber, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.