|
Volumn 2, Issue , 2011, Pages 349-358
|
Nonparametric virtual sensors for semiconductor manufacturing: Using information theoretic learning and kernel machines
|
Author keywords
Entropy; Kernel methods; Machine learning; Semiconductors
|
Indexed keywords
DENSITY ESTIMATION;
INFORMATION THEORETIC LEARNING;
KERNEL MACHINE;
KERNEL METHODS;
LEARNING PROBLEM;
LOSS FUNCTIONS;
MACHINE-LEARNING;
NON-GAUSSIAN;
NON-PARAMETRIC;
PREDICTIVE MODELS;
PROBABILISTIC UNCERTAINTY;
PROCESS DATA;
RENYI'S ENTROPY;
REPRODUCING KERNEL HILBERT SPACES;
SEMICONDUCTOR MANUFACTURING;
SEMICONDUCTOR MANUFACTURING INDUSTRY;
SIMULATION STUDIES;
VIRTUAL SENSOR;
DENSITY FUNCTIONAL THEORY;
ENTROPY;
HILBERT SPACES;
INDUSTRIAL APPLICATIONS;
INFORMATION THEORY;
LEARNING ALGORITHMS;
MANUFACTURE;
PROBABILITY DENSITY FUNCTION;
SEMICONDUCTOR DEVICE MANUFACTURE;
SENSORS;
UNCERTAINTY ANALYSIS;
ROBOTICS;
|
EID: 80052569246
PISSN: None
EISSN: None
Source Type: Conference Proceeding
DOI: None Document Type: Conference Paper |
Times cited : (1)
|
References (15)
|