-
1
-
-
30244460855
-
The fundamental solutions for the fractional diffusion-wave equation
-
DOI 10.1016/0893-9659(96)00089-4, PII S0893965996000894
-
F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation., Appl. Math. Lett. 9, 23-28 (1996). 10.1016/0893-9659(96)00089-4 (Pubitemid 126365654)
-
(1996)
Applied Mathematics Letters
, vol.9
, Issue.6
, pp. 23-28
-
-
Mainardi, F.1
-
2
-
-
0001553919
-
Fractional diffusion and wave equations
-
10.1063/1.528578
-
W. R. Schneider and W. Wyss, Fractional diffusion and wave equations., J. Math. Phys. 30, 134-144 (1989). 10.1063/1.528578
-
(1989)
J. Math. Phys.
, vol.30
, pp. 134-144
-
-
Schneider, W.R.1
Wyss, W.2
-
3
-
-
0025387251
-
Application of fractional derivatives to seismic analysis of base-isolated models
-
C. Koh and J. Kelly, Application of fractional derivatives to seismic analysis of base- isolated models., Earthquake Eng. Struct. Dyn. 19, 229-241 (1990). 10.1002/eqe.v19:2 (Pubitemid 20649203)
-
(1990)
Earthquake Engineering & Structural Dynamics
, vol.19
, Issue.2
, pp. 229-241
-
-
Koh Chan Ghee1
Kelly James, M.2
-
4
-
-
0028292355
-
Time domain wave equations for lossy media obeying a frequency power law
-
DOI 10.1121/1.410434
-
T. Szabo, Time domain wave equations for lossy media obeying a frequency power law., J. Acoust. Soc. Am. 96, 491-500 (1994). 10.1121/1.410434 (Pubitemid 24209147)
-
(1994)
Journal of the Acoustical Society of America
, vol.96
, Issue.1
, pp. 491-500
-
-
Szabo, T.L.1
-
5
-
-
0030691982
-
Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments
-
DOI 10.1121/1.420313
-
M. Buckingham, Theory of acoustic attenuation, dispersion, and pulse propagation in unconsolidated granular materials including marine sediments., J. Acoust. Soc. Am. 102, 2579-2596 (1997). 10.1121/1.420313 (Pubitemid 27486236)
-
(1997)
Journal of the Acoustical Society of America
, vol.102
, Issue.5
, pp. 2579-2596
-
-
Buckingham, M.J.1
-
6
-
-
0038282854
-
Including dispersion and attenuation directly in the time domain for wave propagation in isotropic media
-
DOI 10.1121/1.1572143
-
G. V. Norton and J. C. Novarini, Including dispersion and attenuation directly in the time domain for wave propagation in isotropic media., J. Acoust. Soc. Am. 113, 3024-3030 (2003). 10.1121/1.1572143 (Pubitemid 36676494)
-
(2003)
Journal of the Acoustical Society of America
, vol.113
, Issue.6
, pp. 3024-3031
-
-
Norton, G.V.1
Novarini, J.C.2
-
7
-
-
1642641759
-
Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency
-
DOI 10.1121/1.1646399
-
W. Chen and S. Holm, Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency., J. Acoust. Soc. Am. 115, 1424-1430 (2004). 10.1121/1.1646399 (Pubitemid 38451295)
-
(2004)
Journal of the Acoustical Society of America
, vol.115
, Issue.4
, pp. 1424-1430
-
-
Chen, W.1
Holm, S.2
-
8
-
-
0003432421
-
-
Cha: Acoustic Properties of Tissue at Ultrasonic Frequencies (Academic Press, San Diego)
-
F. A. Duck, Physical Properties of Tissues-A Comprehensive Reference Book, Chap.: Acoustic Properties of Tissue at Ultrasonic Frequencies (Academic Press, San Diego, 1990), pp. 98-108.
-
(1990)
Physical Properties of Tissues-A Comprehensive Reference Book
, pp. 98-108
-
-
Duck, F.A.1
-
9
-
-
0001013691
-
Attenuation of sound in marine sediments: A review with emphasis on new low-frequency data
-
10.1121/1.398195
-
A. Kibblewhite, Attenuation of sound in marine sediments: A review with emphasis on new low-frequency data., J. Acoust. Soc. Am. 86, 716-738 (1989). 10.1121/1.398195
-
(1989)
J. Acoust. Soc. Am.
, vol.86
, pp. 716-738
-
-
Kibblewhite, A.1
-
10
-
-
33845373149
-
Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation
-
DOI 10.1121/1.2354032
-
M. Wismer, Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation., J. Acoust. Soc. Am. 120, 3493-3502 (2006). 10.1121/1.2354032 (Pubitemid 44888049)
-
(2006)
Journal of the Acoustical Society of America
, vol.120
, Issue.6
, pp. 3493-3502
-
-
Wismer, M.G.1
-
11
-
-
75949115950
-
A unifying fractional wave equation for compressional and shear waves
-
10.1121/1.3268508
-
S. Holm and R. Sinkus, A unifying fractional wave equation for compressional and shear waves., J. Acoust. Soc. Am. 127, 542-548 (2010). 10.1121/1.3268508
-
(2010)
J. Acoust. Soc. Am.
, vol.127
, pp. 542-548
-
-
Holm, S.1
Sinkus, R.2
-
12
-
-
77956256476
-
Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian
-
10.1121/1.3377056
-
B. Treeby and B. Cox, Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian., J. Acoust. Soc. Am. 127, 2741-2748 (2010). 10.1121/1.3377056
-
(2010)
J. Acoust. Soc. Am.
, vol.127
, pp. 2741-2748
-
-
Treeby, B.1
Cox, B.2
-
13
-
-
84856117283
-
-
(Last viewed 8/16/2010).
-
J. Berntsen, http://folk.uib.no/nmajb/Bergencode.html, 2000 (Last viewed 8/16/2010).
-
(2000)
-
-
Berntsen, J.1
-
14
-
-
0001432747
-
-
Frontiers of Nonlinear Acoustics: Proceedings of the 12th ISNA, edited by M. F. Hamilton and D. T. Blackstock (Elsevier Science, New York)
-
J. Berntsen, Numerical calculations of finite amplitude sound beams, Frontiers of Nonlinear Acoustics: Proceedings of the 12th ISNA, edited by, M. F. Hamilton, and, D. T. Blackstock, (Elsevier Science, New York, 1990), pp. 191-196.
-
(1990)
Numerical Calculations of Finite Amplitude Sound Beams
, pp. 191-196
-
-
Berntsen, J.1
-
15
-
-
84856089547
-
-
(Last viewed 8/16/2010).
-
Y. Lee, R. Cleveland, and M. Hamilton, http://people.bu.edu/robinc/kzk/, 1998 (Last viewed 8/16/2010).
-
(1998)
-
-
Lee, Y.1
Cleveland, R.2
Hamilton, M.3
-
16
-
-
0028843409
-
Time-domain modeling of pulsed finite-amplitude sound beams
-
10.1121/1.412135
-
Y. Lee and M. Hamilton, Time-domain modeling of pulsed finite-amplitude sound beams., J. Acoust. Soc. Am. 97, 906-917 (1995). 10.1121/1.412135
-
(1995)
J. Acoust. Soc. Am.
, vol.97
, pp. 906-917
-
-
Lee, Y.1
Hamilton, M.2
-
17
-
-
0037240020
-
Modeling of nonlinear ultrasound propagation in tissue from array transducers
-
DOI 10.1121/1.1528926
-
R. Zemp, J. Tavakkoli, and R. Cobbold, Modeling of nonlinear ultrasound propagation in tissue from array transducers., J. Acoust. Soc. Am. 113, 139-152 (2003). 10.1121/1.1528926 (Pubitemid 36105668)
-
(2003)
Journal of the Acoustical Society of America
, vol.113
, Issue.1
, pp. 139-152
-
-
Zemp, R.J.1
Tavakkoli, J.2
Cobbold, R.S.C.3
-
18
-
-
0026198624
-
New approaches to the linear propagation of acoustic fields
-
10.1121/1.401277
-
P. T. Christopher and K. J. Parker, New approaches to the linear propagation of acoustic fields., J. Acoust. Soc. Am. 90, 507-521 (1991). 10.1121/1.401277
-
(1991)
J. Acoust. Soc. Am.
, vol.90
, pp. 507-521
-
-
Christopher, P.T.1
Parker, K.J.2
-
19
-
-
0025822618
-
New approaches to nonlinear diffractive field propagation
-
10.1121/1.401274
-
P. T. Christopher and K. J. Parker, New approaches to nonlinear diffractive field propagation., J. Acoust. Soc. Am. 90, 488-499 (1991). 10.1121/1.401274
-
(1991)
J. Acoust. Soc. Am.
, vol.90
, pp. 488-499
-
-
Christopher, P.T.1
Parker, K.J.2
-
20
-
-
0037327109
-
Simulation of ultrasonic focus aberration and correction through human tissue
-
10.1121/1.1531986
-
M. Tabei, T. Mast, and R. Waag, Simulation of ultrasonic focus aberration and correction through human tissue., J. Acoust. Soc. Am. 113, 1166-1176 (2002). 10.1121/1.1531986
-
(2002)
J. Acoust. Soc. Am.
, vol.113
, pp. 1166-1176
-
-
Tabei, M.1
Mast, T.2
Waag, R.3
-
21
-
-
12344329740
-
Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging
-
DOI 10.1121/1.1828671
-
X. Yang and R. Cleveland, Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging., J. Acoust. Soc. Am. 117, 113-123 (2005). 10.1121/1.1828671 (Pubitemid 40130138)
-
(2005)
Journal of the Acoustical Society of America
, vol.117
, Issue.1
, pp. 113-123
-
-
Yang, X.1
Cleveland, R.O.2
-
22
-
-
0027146124
-
Representation of the absorption of nonlinear waves by fractional derivatives
-
DOI 10.1121/1.407192
-
M. Ochmann and S. Makarov, Representation of the absorption of nonlinear waves by fractional derivatives., J. Acoust. Soc. Am. 94, 3392-3399 (1993). 10.1121/1.407192 (Pubitemid 24000848)
-
(1993)
Journal of the Acoustical Society of America
, vol.94
, Issue.6
, pp. 3392-3399
-
-
Ochmann, M.1
Makarov, S.2
-
23
-
-
9644281076
-
Full wave modeling of therapeutic ultrasound: Efficient time-domain implementation of the frequency power-law attenuation
-
DOI 10.1121/1.1798355
-
M. Liebler, S. Ginter, T. Dreyer, and R. Riedlinger, Full wave modeling of therapeutic ultrasound: Efficient time-domain implementation of the frequency power-law attenuation., J. Acoust. Soc. Am. 116, 2742-2750 (2004). 10.1121/1.1798355 (Pubitemid 39575522)
-
(2004)
Journal of the Acoustical Society of America
, vol.116
, Issue.5
, pp. 2742-2750
-
-
Liebler, M.1
Ginter, S.2
Dreyer, T.3
Riedlinger, R.E.4
-
24
-
-
0032189521
-
Modeling of pulsed finite-amplitude focused sound beams in time domain
-
DOI 10.1121/1.423720
-
J. Tavakkoli, D. Cathignol, R. Souchon, and O. Sapozhnikov, Modeling of pulsed finiteamplitude focused sound beams in time domain., J. Acoust. Soc. Am. 104, 2061-2072 (1998). 10.1121/1.423720 (Pubitemid 28463100)
-
(1998)
Journal of the Acoustical Society of America
, vol.104
, Issue.4
, pp. 2061-2072
-
-
Tavakkoli, J.1
Cathignol, D.2
Souchon, R.3
Sapozhnikov, O.A.4
-
25
-
-
0034155106
-
Time-domain modeling of nonlinear distortion of pulsed finite amplitude sound beams
-
DOI 10.1016/S0041-624X(99)00112-2
-
J. Remenieras, O. Bou Matar, V. Labat, and F. Patat, Time-domain modeling of nonlinear distortion of pulsed finite amplitude sound beams., Ultrasonics 38, 305-311 (2000). 10.1016/S0041-624X(99)00112-2 (Pubitemid 30592559)
-
(2000)
Ultrasonics
, vol.38
, Issue.1
, pp. 305-311
-
-
Remenieras, J.P.1
Bou Matar, O.2
Labat, V.3
Patat, F.4
-
26
-
-
68349125540
-
The Westervelt equation with viscous attenuation versus a causal propagation operator: A numerical comparison
-
10.1016/j.jsv.2009.05.031
-
G. Norton and R. Purrington, The Westervelt equation with viscous attenuation versus a causal propagation operator: A numerical comparison., J. Sound Vib. 327, 163-172 (2009). 10.1016/j.jsv.2009.05.031
-
(2009)
J. Sound Vib.
, vol.327
, pp. 163-172
-
-
Norton, G.1
Purrington, R.2
-
27
-
-
0000074782
-
Absorption of sound in fluids
-
10.1103/RevModPhys.23.353
-
J. Markham, R. Beyer, and R. Lindsay, Absorption of sound in fluids., Rev. Mod. Phys. 23, 353-411 (1951). 10.1103/RevModPhys.23.353
-
(1951)
Rev. Mod. Phys.
, vol.23
, pp. 353-411
-
-
Markham, J.1
Beyer, R.2
Lindsay, R.3
-
28
-
-
0030867045
-
Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids
-
Y. Rossikhin and M. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids., Appl. Mech. Rev. 50, 15-67 (1997). 10.1115/1.3101682 (Pubitemid 127645586)
-
(1997)
Applied Mechanics Reviews
, vol.50
, Issue.1
, pp. 15-67
-
-
Rossikhin, Y.A.1
Shitikova, M.V.2
-
29
-
-
34250511985
-
A general theory of heat conduction with finite wave speeds
-
10.1007/BF00281373
-
M. Gurtin and A. Pipkin, A general theory of heat conduction with finite wave speeds., Arch. Ration. Mech. Anal. 31, 113-126 (1968). 10.1007/BF00281373
-
(1968)
Arch. Ration. Mech. Anal.
, vol.31
, pp. 113-126
-
-
Gurtin, M.1
Pipkin, A.2
-
30
-
-
33846862055
-
Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation
-
10.1016/j.ijsolstr.2006.07.008
-
Y. Z. Povstenko, Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation., Int. J. Solids Struct. 44, 2324-2348 (2007). 10.1016/j.ijsolstr.2006.07.008
-
(2007)
Int. J. Solids Struct.
, vol.44
, pp. 2324-2348
-
-
Povstenko, Y.Z.1
-
31
-
-
0012926350
-
Course of Theoretical Physics
-
Vol. of, Cha: Viscous Fluids, 2nd ed. (Pergamon Press, Oxford)
-
L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Vol. 6 of Course of Theoretical Physics., Chap.: Viscous Fluids, 2nd ed. (Pergamon Press, Oxford, 1987), pp. 44-48.
-
(1987)
Fluid Mechanics
, vol.6
, pp. 44-48
-
-
Landau, L.D.1
Lifshitz, E.M.2
-
32
-
-
0002485994
-
Model equations
-
in, edited by M. F. Hamilton and D. T. Blackstock (Academic Press, San Diego), Cha
-
M. F. Hamilton and C. L. Morfey, Model equations., in Nonlinear Acoustics, edited by, M. F. Hamilton, and, D. T. Blackstock, (Academic Press, San Diego, 1998), Chap., pp. 41-63.
-
(1998)
Nonlinear Acoustics
, pp. 41-63
-
-
Hamilton, M.F.1
Morfey, C.L.2
-
33
-
-
84977255207
-
Linear models of dissipation whose Q is almost frequency independent-II
-
M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II., Geophys. J. R. Astron. Soc. 13, 529-539 (1967).
-
(1967)
Geophys. J. R. Astron. Soc.
, vol.13
, pp. 529-539
-
-
Caputo, M.1
-
34
-
-
33748688153
-
Mathematics in Science and Engineering
-
Vol. of, Cha: Fractional Derivatives and Integrals (Academic Press, San Diego)
-
I. Podlubny, Fractional Differential Equations, Vol. 198 of Mathematics in Science and Engineering., Chap.: Fractional Derivatives and Integrals (Academic Press, San Diego, 1999), pp. 41-117.
-
(1999)
Fractional Differential Equations
, vol.198
, pp. 41-117
-
-
Podlubny, I.1
-
35
-
-
85065556461
-
Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results
-
Y. Rossikhin and M. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results., Appl. Mech. Rev. 63, 1-52 (2010).
-
(2010)
Appl. Mech. Rev.
, vol.63
, pp. 1-52
-
-
Rossikhin, Y.1
Shitikova, M.2
-
36
-
-
0000366367
-
Sur une forme de l'quation de la chaleur liminant le paradoxe d'une propagation instantane (A form of heat equation which eliminates the paradox of instantaneous propagation)
-
C. Cattaneo, Sur une forme de l'quation de la chaleur liminant le paradoxe d'une propagation instantane (A form of heat equation which eliminates the paradox of instantaneous propagation)., C. R. Acad. Sci. 247, 431-433 (1958).
-
(1958)
C. R. Acad. Sci.
, vol.247
, pp. 431-433
-
-
Cattaneo, C.1
-
37
-
-
0000366366
-
Les paradoxes de la thorie continue de l'quation de la chaleur (Paradoxes in the continuous theory of the heat equation)
-
P. Vernotte, Les paradoxes de la thorie continue de l'quation de la chaleur (Paradoxes in the continuous theory of the heat equation)., C.R. Acad. Sci. 246, 3154-3155 (1958).
-
(1958)
C.R. Acad. Sci.
, vol.246
, pp. 3154-3155
-
-
Vernotte, P.1
-
38
-
-
0034269293
-
Experimental evidence about the controversy concerning Fourier or non-Fourier heat conduction in materials with a nonhomogeneous inner structure
-
10.1007/s002310000081
-
H. Herwig and K. Beckert, Experimental evidence about the controversy concerning Fourier or non-Fourier heat conduction in materials with a nonhomogeneous inner structure., Heat Mass Transf. 36, 387-392 (2000). 10.1007/s002310000081
-
(2000)
Heat Mass Transf.
, vol.36
, pp. 387-392
-
-
Herwig, H.1
Beckert, K.2
-
39
-
-
2342508348
-
The relationship between the local temperature and the local heat flux within a one-dimensional semi-infinite domain of heat wave propagation
-
V. V. Kulish and V. B. Novozhilov, The relationship between the local temperature and the local heat flux within a one-dimensional semi-infinite domain of heat wave propagation., Math. Probl. Eng. 2003, 173-179 (2003). 10.1155/S1024123X03209017 (Pubitemid 38604143)
-
(2003)
Mathematical Problems in Engineering
, vol.2003
, Issue.3-4
, pp. 173-179
-
-
Kulish, V.V.1
Novozhilov, V.B.2
-
40
-
-
0022492943
-
The realization of the generalized transfer equation in a medium with fractal geometry
-
R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry., Phys. Status Solidi B 133, 425-430 (1986). 10.1002/pssb.v133:1 (Pubitemid 16505297)
-
(1986)
Physica Status Solidi (B) Basic Research
, vol.133
, Issue.1
, pp. 425-430
-
-
Nigmatullin, R.R.1
-
41
-
-
0036650559
-
Solution for a fractional diffusion-wave equation defined in a bounded domain
-
DOI 10.1023/A:1016539022492, Fractional Order Calculus and Its Applications
-
O. Agrawal, Solution for a fractional diffusion-wave equation defined in a bounded domain., Nonlin. Dyn. 29, 145-155 (2002). 10.1023/A:1016539022492 (Pubitemid 34945396)
-
(2002)
Nonlinear Dynamics
, vol.29
, Issue.1-4
, pp. 145-155
-
-
Agrawal, O.P.1
-
42
-
-
0021390146
-
Distortion and harmonic generation in the nearfield of a finite amplitude sound beam
-
10.1121/1.390585
-
S. I. Aanonsen, T. Barkve, J. N. Tjtta, and S. Tjtta, Distortion and harmonic generation in the nearfield of a finite amplitude sound beam., J. Acoust. Soc. Am. 75, 749-768 (1984). 10.1121/1.390585
-
(1984)
J. Acoust. Soc. Am.
, vol.75
, pp. 749-768
-
-
Aanonsen, S.I.1
Barkve, T.2
Tjtta, J.N.3
Tjtta, S.4
-
43
-
-
23844434316
-
Causality-imposed (Kramers-Kronig) relationships between attenuation and dispersion
-
DOI 10.1109/TUFFC.2005.1503968
-
K. R. Waters, J. Mobley, and J. G. Miller, Causality-imposed (Kramers-Kronig) relationships between attenuation and dispersion., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 822-823 (2005). 10.1109/TUFFC.2005. 1503968 (Pubitemid 41161921)
-
(2005)
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
, vol.52
, Issue.5
, pp. 822-833
-
-
Waters, K.R.1
Mobley, J.2
Miller, J.G.3
-
44
-
-
0019589811
-
Ultrasonic attenuation and propagation speed in normal human brain
-
10.1121/1.386578
-
F. W. Kremkau, R. W. Barnes, and C. P. McGraw, Ultrasonic attenuation and propagation speed in normal human brain., J. Acoust. Soc. Am. 70, 29-37 (1981). 10.1121/1.386578
-
(1981)
J. Acoust. Soc. Am.
, vol.70
, pp. 29-37
-
-
Kremkau, F.W.1
Barnes, R.W.2
McGraw, C.P.3
-
45
-
-
0019546392
-
Kramers-Kronig relationship between ultrasonic attenuation and phase velocity
-
M. O'Donnell, E. T. Jaynes, and J. G. Miller, Kramers-Kronig relationship between ultrasonic attenuation and phase velocity., J. Acoust. Soc. Am. 69, 696-701 (1981). 10.1121/1.385566 (Pubitemid 11495379)
-
(1981)
Journal of the Acoustical Society of America
, vol.69
, Issue.3
, pp. 696-701
-
-
O'Donnell, M.1
Jaynes, E.T.2
Miller, J.G.3
|