메뉴 건너뛰기




Volumn 32, Issue 14, 2011, Pages 1768-1777

Music classification via the bag-of-features approach

Author keywords

Bag of features; Multiple codebook model; Music classification; Pattern classification; Support Vector Machines

Indexed keywords

ANALYSIS MODELS; AUDIO-BASED; BAG-OF-FEATURES; BENCHMARK DATA; CENTRAL PROBLEMS; CLASSIFICATION SYSTEM; CODEBOOK MODELS; CODEBOOKS; FEATURE REPRESENTATION; FEATURE SETS; FEATURE VECTORS; GENRE CLASSIFICATION; LOCAL FEATURE; LOCAL FRAME; MODELING POWER; MUSIC CLASSIFICATION; MUSIC INFORMATION RETRIEVAL; PROBABILITY MODELS; STANDARD METHOD; SUPPORT VECTOR;

EID: 80052532611     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2011.06.026     Document Type: Article
Times cited : (35)

References (29)
  • 1
    • 2942735564 scopus 로고    scopus 로고
    • A large-scale evaluation of acoustic and subjective music similarity measures
    • A. Berenzweig, B. Logan, D. Ellis, and B. Whitman A large-scale evaluation of acoustic and subjective music similarity measures Comput. Music J. 28 2 2004 63 76
    • (2004) Comput. Music J. , vol.28 , Issue.2 , pp. 63-76
    • Berenzweig, A.1    Logan, B.2    Ellis, D.3    Whitman, B.4
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 24 2 1996 123 140 (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 34247576789 scopus 로고    scopus 로고
    • The pyramid match kernel: Efficient learning with sets of features
    • K. Grauman, and T. Darrell The pyramid match kernel: Efficient learning with sets of features J. Machine Learn. Res. 8 2007 725 760 (Pubitemid 46677049)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 725-760
    • Grauman, K.1    Darrell, T.2
  • 8
    • 33646739998 scopus 로고    scopus 로고
    • Toward intelligent music information retrieval
    • T. Li, and M. Ogihara Toward intelligent music information retrieval IEEE Trans. Multimedia 8 3 2006 564 573
    • (2006) IEEE Trans. Multimedia , vol.8 , Issue.3 , pp. 564-573
    • Li, T.1    Ogihara, M.2
  • 9
    • 84873536955 scopus 로고    scopus 로고
    • Evaluation of feature extractors and psycho-acoustic transformations for music genre classification
    • Lidy, T., Rauber, A., 2005. Evaluation of feature extractors and psycho-acoustic transformations for music genre classification, in: Internat. Conf. on Music Information Retrieval.
    • (2005) Internat. Conf. on Music Information Retrieval
    • Lidy, T.1    Rauber, A.2
  • 10
    • 85008016199 scopus 로고    scopus 로고
    • Audio classification and categorization based on wavelets and support vector machine
    • C.C. Lin, S.H. Chen, T.K. Truong, and Y. Chang Audio classification and categorization based on wavelets and support vector machine IEEE Trans. Speech Audio Process. 13 5 2005 644 651
    • (2005) IEEE Trans. Speech Audio Process. , vol.13 , Issue.5 , pp. 644-651
    • Lin, C.C.1    Chen, S.H.2    Truong, T.K.3    Chang, Y.4
  • 24
    • 0036648502 scopus 로고    scopus 로고
    • Musical genre classification of audio signals
    • DOI 10.1109/TSA.2002.800560, PII 1011092002800560
    • G. Tzanetakis, and P. Cook Musical genre classification of audio signals IEEE Trans. Speech Audio Process. 10 5 2002 293 302 (Pubitemid 34950067)
    • (2002) IEEE Transactions on Speech and Audio Processing , vol.10 , Issue.5 , pp. 293-302
    • Tzanetakis, G.1    Cook, P.2
  • 29
    • 33846580425 scopus 로고    scopus 로고
    • Local features and kernels for classification of texture and object categories: A comprehensive study
    • DOI 10.1007/s11263-006-9794-4
    • J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid Local features and kernels for classification of texture and object categories: A comprehensive study Internat. J. Comput. Vision 73 2 2007 213 238 (Pubitemid 46181625)
    • (2007) International Journal of Computer Vision , vol.73 , Issue.2 , pp. 213-238
    • Zhang, J.1    Marszalek, M.2    Lazebnik, S.3    Schmid, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.