메뉴 건너뛰기




Volumn 96, Issue 11, 2011, Pages 1552-1563

Optimization of the inspection intervals of a safety system in a nuclear power plant by Multi-Objective Differential Evolution (MODE)

Author keywords

Differential Evolution; Evolutionary Algorithms; Genetic Algorithms; Safety system

Indexed keywords

COMPUTATION TIME; DIFFERENTIAL EVOLUTION; HIGH PRESSURE INJECTION SYSTEM; INSPECTION INTERVALS; MULTI OBJECTIVE; MULTI-OBJECTIVE DIFFERENTIAL EVOLUTIONS; PARETO FRONTIERS; SAFETY SYSTEM; SINGLE OBJECTIVE OPTIMIZATION;

EID: 80052488470     PISSN: 09518320     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ress.2011.06.010     Document Type: Article
Times cited : (23)

References (37)
  • 1
    • 0035313138 scopus 로고    scopus 로고
    • Multiobjective optimization by genetic algorithms: Application to safety systems
    • DOI 10.1016/S0951-8320(00)00109-5
    • P. Giuggioli Busacca, M. Marseguerra, and E. Zio Multiobjective optimization by genetic algorithms: application to safety systems Reliability Engineering and System Safety 72 2001 59 74 (Pubitemid 32263113)
    • (2001) Reliability Engineering and System Safety , vol.72 , Issue.1 , pp. 59-74
    • Busacca, P.G.1    Marseguerra, M.2    Zio, E.3
  • 2
    • 0002629429 scopus 로고
    • An overview of evolutionary algorithms in multiobjective optimization
    • Carlos M. Fonseca, and J.Fleming Peter An overview of evolutionary algorithms in multiobjective optimization Evolutionary Computation 3 1 1995 1 16
    • (1995) Evolutionary Computation , vol.3 , Issue.1 , pp. 1-16
    • Fonseca, C.M.1    Peter, J.F.2
  • 5
    • 0000852513 scopus 로고
    • Multiobjective optimization using nondominated sorting in genetic algorithms
    • N. Srinivas, and Kalyanmoy Deb Multiobjective optimization using nondominated sorting in genetic algorithms Evolutionary Computation 2 3 1994 221 248
    • (1994) Evolutionary Computation , vol.2 , Issue.3 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 6
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms a comparative case study and the strength pareto approach
    • DOI 10.1109/4235.797969
    • E. Zitzler, and L. Thiele Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach IEEE Transactions on Evolutionary Computer 3 4 1999 257 271 (Pubitemid 30544879)
    • (1999) IEEE Transactions on Evolutionary Computation , vol.3 , Issue.4 , pp. 257-271
    • Zitzler Eckart1    Thiele Lothar2
  • 7
    • 0004140075 scopus 로고    scopus 로고
    • Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Switzerland Available online at
    • E. Zitzler, M. Laumanns, and L. Thiele SPEA2: ImproVing the Strength Pareto EVolutionary Algorithm;Technical Report 103 2001 Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Switzerland Available online at 〈http://www.tik.ee.ethz.ch/sop/ publicationListFiles/zlt2001a.pdf〉
    • (2001) SPEA2: ImproVing the Strength Pareto EVolutionary Algorithm;Technical Report 103
    • Zitzler, E.1    Laumanns, M.2    Thiele, L.3
  • 8
    • 84901404865 scopus 로고    scopus 로고
    • The Pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimization
    • IEEE Press: Piscataway, NJ
    • Knowles, JD; Corne, DW. The Pareto archived evolution strategy: a new baseline algorithm for pareto multiobjective optimisation. In: Proceedings of the 1999 congress on evolutionary computation (CEC1999). IEEE Press: Piscataway, NJ; 1999. p. 98105.
    • (1999) Proceedings of the 1999 Congress on Evolutionary Computation (CEC1999) , pp. 98-105
    • Knowles, J.D.1    Corne, D.W.2
  • 9
    • 0001844324 scopus 로고
    • An overview on genetic algorithms: Part 1 fundamentals
    • D. Beasly, D. Bull, and R. Martin An overview on genetic algorithms: part 1 fundamentals University Computing 15 2 1993 58 69
    • (1993) University Computing , vol.15 , Issue.2 , pp. 58-69
    • Beasly, D.1    Bull, D.2    Martin, R.3
  • 10
    • 0001844324 scopus 로고
    • An overview on genetic algorithms: Part 2. research topics
    • D. Beasly, D. Bull, and R. Martin An overview on genetic algorithms: part 2. research topics University Computing 15 4 1993 170 181
    • (1993) University Computing , vol.15 , Issue.4 , pp. 170-181
    • Beasly, D.1    Bull, D.2    Martin, R.3
  • 11
    • 0028338155 scopus 로고
    • An introduction to simulated evolutionary optimization
    • D. Fogel An introduction to simulated evolutionary optimization IEEE Trans Neural Networks 15 1 1994 3 14
    • (1994) IEEE Trans Neural Networks , vol.15 , Issue.1 , pp. 3-14
    • Fogel, D.1
  • 15
    • 0033893262 scopus 로고    scopus 로고
    • Constrained optimization of test intervals using a steady-state genetic algorithm
    • DOI 10.1016/S0951-8320(99)00074-5
    • S. Martorell, S. Carlos, A. Sanchez, and V. Serradell Constrained optimization of test intervals using a steady-state genetic algorithm Reliability Engineering and System Safety 67 2000 215 232 (Pubitemid 30555821)
    • (2000) Reliability Engineering and System Safety , vol.67 , Issue.3 , pp. 215-232
    • Martorell, S.1    Carlos, S.2    Sanchez, A.3    Serradell, V.4
  • 16
    • 27144498157 scopus 로고    scopus 로고
    • A numerical study of some modified differential evolution algorithms
    • DOI 10.1016/j.ejor.2004.08.047, PII S037722170500281X
    • P. Kaelo, and M.M. Ali A numerical study of some modified differential evolution algorithm European Journal of Operations Research 169 2006 1176 1184 (Pubitemid 41492039)
    • (2006) European Journal of Operational Research , vol.169 , Issue.3 , pp. 1176-1184
    • Kaelo, P.1    Ali, M.M.2
  • 19
    • 0030246756 scopus 로고    scopus 로고
    • Muitiobjective pressurized water reactor reload core design by nondominated genetic algorithm search
    • G.T. Parks Multiobjective pressurized water reactor reload core designusing genetic algorithm search Nuclear Science and Engineering 124 1997 178 187 (Pubitemid 126564899)
    • (1996) Nuclear Science and Engineering , vol.124 , Issue.1 , pp. 178-187
    • Parks, G.T.1
  • 23
    • 33745727034 scopus 로고    scopus 로고
    • Multi-objective optimization using genetic algorithms: A tutorial
    • DOI 10.1016/j.ress.2005.11.018, PII S0951832005002012
    • Abdullah Konak, David W. Coit, and Alice E. Smith Multi-objective optimization using genetic algorithms: a tutorial Reliability Engineering and System Safety Volume 91 9 2006 992 1007 (Pubitemid 43996942)
    • (2006) Reliability Engineering and System Safety , vol.91 , Issue.9 , pp. 992-1007
    • Konak, A.1    Coit, D.W.2    Smith, A.E.3
  • 25
    • 0142000477 scopus 로고    scopus 로고
    • Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces
    • R. Storn, and K. Price Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces Journal of Global Optimization 11 1997 341 359 (Pubitemid 127502202)
    • (1997) Journal of Global Optimization , vol.11 , Issue.4 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 28
    • 0043268702 scopus 로고    scopus 로고
    • A trigonometric mutation operation to differential evolution
    • Hui-Yuan Fan, and Jouni Lampinen A trigonometric mutation operation to differential evolution Journal of Global optimization 2003 105 129
    • (2003) Journal of Global Optimization , pp. 105-129
    • Fan, H.-Y.1    Lampinen, J.2
  • 29
    • 33847199831 scopus 로고    scopus 로고
    • Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
    • DOI 10.1109/TEVC.2006.872133
    • J. Brest, S. Greiner, B. Boškovič, M. Mernik, and V. Žumer Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems IEEE Transactions on Evolutionary Computation 10 2006 646 657 (Pubitemid 46445554)
    • (2006) IEEE Transactions on Evolutionary Computation , vol.10 , Issue.6 , pp. 646-657
    • Brest, J.1    Greiner, S.2    Boskovic, B.3    Mernik, M.4    Zumer, V.5
  • 32
    • 20344375182 scopus 로고    scopus 로고
    • Control of population diversity and adaptation in differential evolution algorithms
    • Matousek R, Osmera P. editors
    • Zaharie, D. Control of population diversity and adaptation in differential evolution algorithms. In: Matousek R, Osmera P. editors. Proceedings of the ninth international conference on soft computing, Brno; 2003. p. 4146.
    • (2003) Proceedings of the Ninth International Conference on Soft Computing, Brno , pp. 41-46
    • Zaharie, D.1
  • 33
    • 20444409462 scopus 로고    scopus 로고
    • A fuzzy adaptive differential evolution algorithm
    • DOI 10.1007/s00500-004-0363-x
    • J. Liu, and J. Lampinen A fuzzy adaptive differential evolution algorithm, soft computing - a fusion of foundations Methodologies and Applications 9 6 2005 448 462 [Online] (Pubitemid 40802750)
    • (2005) Soft Computing , vol.9 , Issue.6 , pp. 448-462
    • Liu, J.1    Lampinen, J.2
  • 35
    • 38349126484 scopus 로고    scopus 로고
    • Self-adapting control parameters modified differential evolution for trajectory planning of manipulators
    • L. Wu, Y. Wang, and S. Zhou Self-adapting control parameters modified differential evolution for trajectory planning of manipulators Journal of Control Theory and Applications 2007 365 373
    • (2007) Journal of Control Theory and Applications , pp. 365-373
    • Wu, L.1    Wang, Y.2    Zhou, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.