메뉴 건너뛰기




Volumn , Issue , 2011, Pages 453-458

Robustness of filter-based feature ranking: A case study

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION PERFORMANCE; FEATURE RANKING; FILTER MODEL; FILTER-BASED; GAIN RATIO; RELIEFF; SIGNAL TO NOISE;

EID: 80052418039     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (15)

References (19)
  • 1
    • 36948999941 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • Asuncion, A., and Newman, D. 2007. UCI machine learning repository [http://www.ics.uci.edu/~mlearn/MLRepository.html]. University of California, Irvine, School of Information and Computer Sciences.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.2
  • 2
    • 0003024008 scopus 로고
    • On the handling of continuous-valued attributes in decision tree generation
    • Fayyad, U. M., and Irani, K. B. 1992. On the handling of continuous-valued attributes in decision tree generation. Machine Learning 8:87-102.
    • (1992) Machine Learning , vol.8 , pp. 87-102
    • Fayyad, U.M.1    Irani, K.B.2
  • 5
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • Hall, M. A., and Holmes, G. 2003. Benchmarking attribute selection techniques for discrete class data mining. IEEE Transactions on Knowledge and Data Engineering 15(6):1437-1447.
    • (2003) IEEE Transactions on Knowledge and Data Engineering , vol.15 , Issue.6 , pp. 1437-1447
    • Hall, M.A.1    Holmes, G.2
  • 8
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of RELIEF
    • Springer Verlag
    • Kononenko, I. 1994. Estimating attributes: Analysis and extensions of RELIEF. In European Conference on Machine Learning, 171-182. Springer Verlag.
    • (1994) European Conference on Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 10
    • 0038021028 scopus 로고    scopus 로고
    • A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
    • Liu, H.; Li, J.; and Wong, L. 2002. A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns. Genome Informatics 13:51-60.
    • (2002) Genome Informatics , vol.13 , pp. 51-60
    • Liu, H.1    Li, J.2    Wong, L.3
  • 13
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y.; Inza, I. n.; and Larrañaga, P. 2007. A review of feature selection techniques in bioinformatics. Bioinformatics 23(19):2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.N.2    Larrañaga, P.3
  • 14
    • 71749101234 scopus 로고    scopus 로고
    • Knowledge discovery from imbalanced and noisy data
    • Van Hulse, J., and Khoshgoftaar, T. 2009. Knowledge discovery from imbalanced and noisy data. Data and Knowledge Engineering 68(12):1513-1542.
    • (2009) Data and Knowledge Engineering , vol.68 , Issue.12 , pp. 1513-1542
    • Van Hulse, J.1    Khoshgoftaar, T.2
  • 15
    • 74049095106 scopus 로고    scopus 로고
    • Accurate molecular classification of cancer using simple rules
    • Wang, X., and Gotoh, O. 2009. Accurate molecular classification of cancer using simple rules. BMC Medical Genomics 2(1):64+.
    • (2009) BMC Medical Genomics , vol.2 , Issue.1
    • Wang, X.1    Gotoh, O.2
  • 19
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization
    • Fisher, D. H., ed., Nashville, US: Morgan Kaufmann Publishers, San Francisco, US
    • Yang, Y., and Pedersen, J. O. 1997. A comparative study on feature selection in text categorization. In Fisher, D. H., ed., Proceedings of ICML-97, 14th International Conference on Machine Learning, 412-420. Nashville, US: Morgan Kaufmann Publishers, San Francisco, US.
    • (1997) Proceedings of ICML-97, 14th International Conference on Machine Learning , pp. 412-420
    • Yang, Y.1    Pedersen, J.O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.