메뉴 건너뛰기




Volumn 22, Issue 9, 2011, Pages 1406-1418

Nonlinear identification with local model networks using GTLS techniques and equality constraints

Author keywords

Equality constraints; generalized total least squares; local model network; nonlinear system identification

Indexed keywords

EQUALITY CONSTRAINTS; EXPECTATION MAXIMIZATION; GENERALIZED TOTAL LEAST SQUARES; IDENTIFICATION PROCEDURE; ILLUSTRATIVE EXAMPLES; LOCAL MODEL; LOCAL MODEL NETWORKS; NON-LINEAR SYSTEM IDENTIFICATION; NONLINEAR IDENTIFICATIONS; NONLINEAR PROCESS; PARAMETER ESTIMATION PROCESS; PROCESS KNOWLEDGE; QUANTITATIVE KNOWLEDGE; REAL MEASUREMENTS; STRUCTURED KNOWLEDGE;

EID: 80052393867     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2011.2159309     Document Type: Article
Times cited : (21)

References (28)
  • 2
    • 0029482971 scopus 로고
    • Nonlinear black-box models in system identification: Mathematical foundations
    • Dec
    • A. Juditsky, H. Hjalmarsson, A. Benveniste, B. Delyon, L. Ljung, J. Sjöberg, and Q. Zhang, "Nonlinear black-box models in system identification: Mathematical foundations", Automatica, vol. 31, no. 12, pp. 1725-1750, Dec. 1995.
    • (1995) Automatica , vol.31 , Issue.12 , pp. 1725-1750
    • Juditsky, A.1    Hjalmarsson, H.2    Benveniste, A.3    Delyon, B.4    Ljung, L.5    Sjöberg, J.6    Zhang, Q.7
  • 4
    • 79961019705 scopus 로고    scopus 로고
    • Perspectives on system identification
    • Jul
    • L. Ljung, "Perspectives on system identification", in Proc. 17th IFAC World Congr., Jul. 2008, pp. 1-13.
    • (2008) Proc. 17th IFAC World Congr. , pp. 1-13
    • Ljung, L.1
  • 6
    • 33646761692 scopus 로고    scopus 로고
    • Estimation of autoregressive parameters by the constrained total least square algorithm using a bootstrap method
    • Mar
    • N. Zhou and J. W. Pierre, "Estimation of autoregressive parameters by the constrained total least square algorithm using a bootstrap method", in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., vol. 4. Mar. 2005, pp. 417-420.
    • (2005) Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. , vol.4 , pp. 417-420
    • Zhou, N.1    Pierre, J.W.2
  • 7
    • 34147121416 scopus 로고    scopus 로고
    • Estimation of constrained parameters with guaranteed MSE improvement
    • Apr
    • A. Benavoli, L. Chisci, and A. Farina, "Estimation of constrained parameters with guaranteed MSE improvement", IEEE Trans. Signal Process., vol. 55, no. 4, pp. 1264-1274, Apr. 2007.
    • (2007) IEEE Trans. Signal Process. , vol.55 , Issue.4 , pp. 1264-1274
    • Benavoli, A.1    Chisci, L.2    Farina, A.3
  • 8
    • 40549092699 scopus 로고    scopus 로고
    • Constrained least absolute deviation neural networks
    • Feb
    • Z. Wang and B. S. Peterson, "Constrained least absolute deviation neural networks", IEEE Trans. Neural Netw., vol. 19, no. 2, pp. 273-283, Feb. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.2 , pp. 273-283
    • Wang, Z.1    Peterson, B.S.2
  • 9
    • 34548605410 scopus 로고    scopus 로고
    • Local model network identification with Gaussian processes
    • Sep
    • G. Gregorcic and G. Lightbody, "Local model network identification with Gaussian processes", IEEE Trans. Neural Netw., vol. 18, no. 5, pp. 1404-1423, Sep. 2007.
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.5 , pp. 1404-1423
    • Gregorcic, G.1    Lightbody, G.2
  • 10
    • 0039485153 scopus 로고
    • The restricted total least squares problem: Formulation, algorithm, and properties
    • Apr
    • S. V. Huffel and H. Zha, "The restricted total least squares problem: Formulation, algorithm, and properties", SIAM J. Matrix Anal. Appl., vol. 12, no. 2, pp. 292-309, Apr. 1991.
    • (1991) SIAM J. Matrix Anal. Appl. , vol.12 , Issue.2 , pp. 292-309
    • Huffel, S.V.1    Zha, H.2
  • 11
    • 0000173668 scopus 로고
    • Analysis and properties of the generalized total least squares problem AX ≈ B when some or all columns in A are subject to error
    • S. Van Huffel and J. Vandewalle, "Analysis and properties of the generalized total least squares problem AX ≈ B when some or all columns in A are subject to error", SIAM J. Matrix Anal. Appl., vol. 10, no. 3, pp. 294-315, 1989.
    • (1989) SIAM J. Matrix Anal. Appl. , vol.10 , Issue.3 , pp. 294-315
    • Van Huffel, S.1    Vandewalle, J.2
  • 12
    • 23044466683 scopus 로고    scopus 로고
    • Multiple model regression estimation
    • Jul
    • V. Cherkassky and Y. Ma, "Multiple model regression estimation", IEEE Trans. Neural Netw., vol. 16, no. 4, pp. 785-798, Jul. 2005.
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.4 , pp. 785-798
    • Cherkassky, V.1    Ma, Y.2
  • 14
    • 33747888908 scopus 로고    scopus 로고
    • A local neuro-fuzzy network for high-dimensional models and optimization
    • Sep
    • S. Jakubek and N. Keuth, "A local neuro-fuzzy network for high-dimensional models and optimization", Eng. Appl. Artif. Intell., vol. 19, no. 6, pp. 705-717, Sep. 2006.
    • (2006) Eng. Appl. Artif. Intell. , vol.19 , Issue.6 , pp. 705-717
    • Jakubek, S.1    Keuth, N.2
  • 15
    • 0036791593 scopus 로고    scopus 로고
    • Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models
    • Oct
    • J. Abonyi, R. Babuska, and F. Szeifert, "Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models", IEEE Trans. Syst., Man, Cybern. Part B: Cybern., vol. 32, no. 5, pp. 612-621, Oct. 2002.
    • (2002) IEEE Trans. Syst., Man, Cybern. Part B: Cybern. , vol.32 , Issue.5 , pp. 612-621
    • Abonyi, J.1    Babuska, R.2    Szeifert, F.3
  • 16
    • 55249122198 scopus 로고    scopus 로고
    • FLEXFIS: A robust incremental learning approach for evolving Takagi-Sugeno fuzzy models
    • Dec
    • E. D. Lughofer, "FLEXFIS: A robust incremental learning approach for evolving Takagi-Sugeno fuzzy models", IEEE Trans. Fuzzy Syst., vol. 16, no. 6, pp. 1393-1410, Dec. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.6 , pp. 1393-1410
    • Lughofer, E.D.1
  • 17
    • 77950638805 scopus 로고    scopus 로고
    • SparseFIS: Data-driven learning of fuzzy systems with sparsity constraints
    • Apr
    • E. Lughofer and S. Kindermann, "SparseFIS: Data-driven learning of fuzzy systems with sparsity constraints", IEEE Trans. Fuzzy Syst., vol. 18, no. 2, pp. 396-411, Apr. 2010.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.2 , pp. 396-411
    • Lughofer, E.1    Kindermann, S.2
  • 18
    • 46449098102 scopus 로고    scopus 로고
    • Neuro-fuzzy modelling using a logistic discriminant tree
    • Jul
    • C. Hametner and S. Jakubek, "Neuro-fuzzy modelling using a logistic discriminant tree", in Proc. Amer. Control Conf., Jul. 2007, pp. 864-869.
    • (2007) Proc. Amer. Control Conf. , pp. 864-869
    • Hametner, C.1    Jakubek, S.2
  • 21
    • 15244362149 scopus 로고    scopus 로고
    • An introduction to total least squares
    • Jul
    • P. De Groen, "An introduction to total least squares", Nieuw Arch. Wiskun., vol. 14, no. 2, pp. 237-254, Jul. 1996.
    • (1996) Nieuw Arch. Wiskun. , vol.14 , Issue.2 , pp. 237-254
    • De Groen, P.1
  • 22
    • 0033148908 scopus 로고    scopus 로고
    • Consistency of system identification by global total least squares
    • Jun
    • W. Scherrer and C. Heij, "Consistency of system identification by global total least squares", Automatica, vol. 35, no. 6, pp. 993-1008, Jun. 1999.
    • (1999) Automatica , vol.35 , Issue.6 , pp. 993-1008
    • Scherrer, W.1    Heij, C.2
  • 23
    • 27644454031 scopus 로고    scopus 로고
    • Application of structured total least squares for system identification and model reduction
    • Oct
    • I. Markovsky, J. Willems, S. Van Huffel, B. De Moor, and R. Pintelon, "Application of structured total least squares for system identification and model reduction", IEEE Trans. Autom. Control, vol. 50, no. 10, pp. 1490-1500, Oct. 2005.
    • (2005) IEEE Trans. Autom. Control , vol.50 , Issue.10 , pp. 1490-1500
    • Markovsky, I.1    Willems, J.2    Van Huffel, S.3    De Moor, B.4    Pintelon, R.5
  • 27
    • 0002087503 scopus 로고
    • On asymptotic distribution theory in segmented regression problems-identified case
    • Jan
    • P. I. Feder, "On asymptotic distribution theory in segmented regression problems-identified case", Ann. Stat., vol. 3, no. 1, pp. 49-83, Jan. 1975.
    • (1975) Ann. Stat. , vol.3 , Issue.1 , pp. 49-83
    • Feder, P.I.1
  • 28
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm", J. Royal Stat. Soc., Ser. B, vol. 39, no. 1, pp. 1-38, 1977.
    • (1977) J. Royal Stat. Soc., Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.