메뉴 건너뛰기




Volumn 224 CCIS, Issue PART 1, 2011, Pages 484-492

Data mining method for incident duration prediction

Author keywords

Bayesian Network; Data Mining; Incident Duration Prediction; Incident Management

Indexed keywords

ACCURATE PREDICTION; ANALYSIS RESULTS; BAYESIAN NETWORK MODELS; DATA MINING METHODS; DATA MINING TECHNIQUES; INCIDENT DURATION; INCIDENT MANAGEMENT; PREDICTION MODEL; REAL TIME; TRAFFIC INCIDENTS;

EID: 80052377506     PISSN: 18650929     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-23214-5_64     Document Type: Conference Paper
Times cited : (7)

References (14)
  • 1
    • 0023088327 scopus 로고
    • Urban freeway congestion: Quantification of the problem and effectiveness of potential solutions
    • Lindley, J.: Urban freeway congestion: quantification of the problem and effectiveness of potential solutions. ITE Journal 57, 27-32 (1987)
    • (1987) ITE Journal , vol.57 , pp. 27-32
    • Lindley, J.1
  • 2
    • 0024855829 scopus 로고
    • Incident characteristics, frequency, and duration on a high volume urban freeway
    • Giuliano, G.: Incident characteristics, frequency, and duration on a high volume urban freeway. Transportation Research Part A 23, 387-396 (1989)
    • (1989) Transportation Research Part A , vol.23 , pp. 387-396
    • Giuliano, G.1
  • 4
    • 0042637847 scopus 로고
    • A simple time-sequential procedure for predicting freeway incident duration
    • Khattak, A.J., Schofer, J.L., Wang, M.: A simple time-sequential procedure for predicting freeway incident duration. IVHS Journal 2, 113-138 (1995)
    • (1995) IVHS Journal , vol.2 , pp. 113-138
    • Khattak, A.J.1    Schofer, J.L.2    Wang, M.3
  • 6
    • 0033622790 scopus 로고    scopus 로고
    • An exploratory hazard-based analysis of highway incident Duration
    • Nam, D., Mannering, F.: An exploratory hazard-based analysis of highway incident Duration. Transportation Research Part A 34(2), 85-102 (2000)
    • (2000) Transportation Research Part A , vol.34 , Issue.2 , pp. 85-102
    • Nam, D.1    Mannering, F.2
  • 7
    • 39049160615 scopus 로고    scopus 로고
    • An information-based time sequential approach to online incident duration prediction
    • Qi, Y., Teng, H.: An information-based time sequential approach to online incident duration prediction. Journal of Intelligent Transportation Systems 12, 1-12 (2008)
    • (2008) Journal of Intelligent Transportation Systems , vol.12 , pp. 1-12
    • Qi, Y.1    Teng, H.2
  • 10
    • 43249091148 scopus 로고    scopus 로고
    • Traffic incident duration prediction grounded on Bayesian decision method-based tree algorithm
    • Jiyang, B., Zhang, X., Sun, L.: Traffic incident duration prediction grounded on Bayesian decision method-based tree algorithm. Journal of Tongji University (Natural Science) (2008)
    • (2008) Journal of Tongji University (Natural Science)
    • Jiyang, B.1    Zhang, X.2    Sun, L.3
  • 12
    • 34548504071 scopus 로고    scopus 로고
    • Sequential forecast of incident duration using Artificial Neural Network models
    • Wei, C., Lee, Y.: Sequential forecast of incident duration using Artificial Neural Network models. Accident Analysis and Prevention 399, 44-954 (2007)
    • (2007) Accident Analysis and Prevention , vol.399 , pp. 44-954
    • Wei, C.1    Lee, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.