메뉴 건너뛰기




Volumn 36, Issue 9, 2011, Pages 451-456

RNA polymerase III under control: Repression and de-repression

Author keywords

[No Author keywords available]

Indexed keywords

CASEIN KINASE II; DNA; DNA DIRECTED RNA POLYMERASE III; GLUCOSE; MAF1 KINASE; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; PROTEIN MAF1; REGULATOR PROTEIN; RNA 5S; TATA BINDING PROTEIN; TRANSFER DEOXYRIBONUCLEIC ACID; TRANSFER RNA; UNCLASSIFIED DRUG;

EID: 80052366947     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2011.06.008     Document Type: Review
Times cited : (28)

References (49)
  • 1
    • 0033229970 scopus 로고    scopus 로고
    • The economics of ribosome biosynthesis in yeast
    • Warner J.R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 1999, 24:437-440.
    • (1999) Trends Biochem. Sci. , vol.24 , pp. 437-440
    • Warner, J.R.1
  • 2
    • 61349155582 scopus 로고    scopus 로고
    • Facilitated recycling protects human RNA polymerase III from repression by Maf1 in vitro
    • Cabart P., et al. Facilitated recycling protects human RNA polymerase III from repression by Maf1 in vitro. J. Biol. Chem. 2008, 283:36108-36117.
    • (2008) J. Biol. Chem. , vol.283 , pp. 36108-36117
    • Cabart, P.1
  • 3
    • 0030034259 scopus 로고    scopus 로고
    • Facilitated recycling pathway for RNA polymerase III
    • Dieci G., Sentenac A. Facilitated recycling pathway for RNA polymerase III. Cell 1996, 84:245-252.
    • (1996) Cell , vol.84 , pp. 245-252
    • Dieci, G.1    Sentenac, A.2
  • 4
    • 0037397261 scopus 로고    scopus 로고
    • Detours and shortcuts to transcription reinitiation
    • Dieci G., Sentenac A. Detours and shortcuts to transcription reinitiation. Trends Biochem. Sci. 2003, 28:202-209.
    • (2003) Trends Biochem. Sci. , vol.28 , pp. 202-209
    • Dieci, G.1    Sentenac, A.2
  • 5
    • 0034952725 scopus 로고    scopus 로고
    • Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae
    • Pluta K., et al. Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae. Mol. Cell. Biol. 2001, 21:5031-5040.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 5031-5040
    • Pluta, K.1
  • 6
    • 33744512096 scopus 로고    scopus 로고
    • General repression of RNA polymerase III transcription is triggered by protein phosphatase type 2A-mediated dephosphorylation of Maf1
    • Oficjalska-Pham D., et al. General repression of RNA polymerase III transcription is triggered by protein phosphatase type 2A-mediated dephosphorylation of Maf1. Mol. Cell 2006, 22:623-632.
    • (2006) Mol. Cell , vol.22 , pp. 623-632
    • Oficjalska-Pham, D.1
  • 7
    • 54949143524 scopus 로고    scopus 로고
    • Maf1, a new player in the regulation of human RNA polymerase III transcription
    • Reina J.H., et al. Maf1, a new player in the regulation of human RNA polymerase III transcription. PLoS ONE 2006, 1:e134.
    • (2006) PLoS ONE , vol.1
    • Reina, J.H.1
  • 8
    • 33744515555 scopus 로고    scopus 로고
    • Dephosphorylation and genome-wide association of Maf1 with Pol III-transcribed genes during repression
    • Roberts D.N., et al. Dephosphorylation and genome-wide association of Maf1 with Pol III-transcribed genes during repression. Mol. Cell 2006, 22:633-644.
    • (2006) Mol. Cell , vol.22 , pp. 633-644
    • Roberts, D.N.1
  • 9
    • 77955287244 scopus 로고    scopus 로고
    • MTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1
    • Kantidakis T., et al. mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11823-11828.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 11823-11828
    • Kantidakis, T.1
  • 10
    • 0036923835 scopus 로고    scopus 로고
    • Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription
    • Upadhya R., et al. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription. Mol. Cell 2002, 10:1489-1494.
    • (2002) Mol. Cell , vol.10 , pp. 1489-1494
    • Upadhya, R.1
  • 11
    • 14844318502 scopus 로고    scopus 로고
    • Two steps in Maf1-dependent repression of transcription by RNA polymerase III
    • Desai N., et al. Two steps in Maf1-dependent repression of transcription by RNA polymerase III. J. Biol. Chem. 2005, 280:6455-6462.
    • (2005) J. Biol. Chem. , vol.280 , pp. 6455-6462
    • Desai, N.1
  • 12
    • 33846659385 scopus 로고    scopus 로고
    • Integration of nutritional and stress signaling pathways by Maf1
    • Willis I.M., Moir R.D. Integration of nutritional and stress signaling pathways by Maf1. Trends Biochem. Sci. 2007, 32:51-53.
    • (2007) Trends Biochem. Sci. , vol.32 , pp. 51-53
    • Willis, I.M.1    Moir, R.D.2
  • 13
    • 35648946305 scopus 로고    scopus 로고
    • Maf1 is involved in coupling carbon metabolism to RNA polymerase III transcription
    • Ciesla M., et al. Maf1 is involved in coupling carbon metabolism to RNA polymerase III transcription. Mol. Cell. Biol. 2007, 27:7693-7702.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 7693-7702
    • Ciesla, M.1
  • 14
    • 77955424206 scopus 로고    scopus 로고
    • Replication stress checkpoint signaling controls tRNA gene transcription
    • Nguyen V.C., et al. Replication stress checkpoint signaling controls tRNA gene transcription. Nat. Struct. Mol. Biol. 2010, 17:976-981.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 976-981
    • Nguyen, V.C.1
  • 15
    • 33749257174 scopus 로고    scopus 로고
    • Protein kinase A regulates RNA polymerase III transcription through the nuclear localization of Maf1
    • Moir R.D., et al. Protein kinase A regulates RNA polymerase III transcription through the nuclear localization of Maf1. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:15044-15049.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 15044-15049
    • Moir, R.D.1
  • 16
    • 69249240179 scopus 로고    scopus 로고
    • Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis
    • Huber A., et al. Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev. 2009, 23:1929-1943.
    • (2009) Genes Dev. , vol.23 , pp. 1929-1943
    • Huber, A.1
  • 17
    • 67649827419 scopus 로고    scopus 로고
    • Regulation of RNA polymerase III transcription involves SCH9-dependent and SCH9-independent branches of the target of rapamycin (TOR) pathway
    • Lee J., et al. Regulation of RNA polymerase III transcription involves SCH9-dependent and SCH9-independent branches of the target of rapamycin (TOR) pathway. J. Biol. Chem. 2009, 284:12604-12608.
    • (2009) J. Biol. Chem. , vol.284 , pp. 12604-12608
    • Lee, J.1
  • 18
    • 74849127960 scopus 로고    scopus 로고
    • Control of RNA polymerases I and III by the TOR signaling pathway
    • Boguta M. Control of RNA polymerases I and III by the TOR signaling pathway. Cell Cycle 2009, 8:4023-4024.
    • (2009) Cell Cycle , vol.8 , pp. 4023-4024
    • Boguta, M.1
  • 19
    • 46749088609 scopus 로고    scopus 로고
    • Derepression of RNA polymerase III transcription by phosphorylation and nuclear export of its negative regulator, Maf1
    • Towpik J., et al. Derepression of RNA polymerase III transcription by phosphorylation and nuclear export of its negative regulator, Maf1. J. Biol. Chem. 2008, 283:17168-17174.
    • (2008) J. Biol. Chem. , vol.283 , pp. 17168-17174
    • Towpik, J.1
  • 20
    • 68249159982 scopus 로고    scopus 로고
    • Mechanisms of regulation of RNA polymerase III-dependent transcription by TORC1
    • Wei Y., et al. Mechanisms of regulation of RNA polymerase III-dependent transcription by TORC1. EMBO J. 2009, 28:2220-2230.
    • (2009) EMBO J. , vol.28 , pp. 2220-2230
    • Wei, Y.1
  • 21
    • 77957222055 scopus 로고    scopus 로고
    • Molecular basis of RNA polymerase III transcription repression by Maf1
    • Vannini A., et al. Molecular basis of RNA polymerase III transcription repression by Maf1. Cell 2010, 143:59-70.
    • (2010) Cell , vol.143 , pp. 59-70
    • Vannini, A.1
  • 22
    • 78449300336 scopus 로고    scopus 로고
    • Conformational flexibility of RNA polymerase III during transcriptional elongation
    • Fernandez-Tornero C., et al. Conformational flexibility of RNA polymerase III during transcriptional elongation. EMBO J. 2010, 29:3762-3772.
    • (2010) EMBO J. , vol.29 , pp. 3762-3772
    • Fernandez-Tornero, C.1
  • 23
    • 79953192187 scopus 로고    scopus 로고
    • Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation
    • Graczyk D., et al. Casein kinase II-mediated phosphorylation of general repressor Maf1 triggers RNA polymerase III activation. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:4926-4931.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 4926-4931
    • Graczyk, D.1
  • 24
    • 77955292162 scopus 로고    scopus 로고
    • MTORC1 directly phosphorylates and regulates human MAF1
    • Michels A.A., et al. mTORC1 directly phosphorylates and regulates human MAF1. Mol. Cell. Biol. 2010, 30:3749-3757.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 3749-3757
    • Michels, A.A.1
  • 25
    • 77952036652 scopus 로고    scopus 로고
    • Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells
    • Shor B., et al. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells. J. Biol. Chem. 2010, 285:15380-15392.
    • (2010) J. Biol. Chem. , vol.285 , pp. 15380-15392
    • Shor, B.1
  • 26
    • 0031053040 scopus 로고    scopus 로고
    • Mutation in a new gene MAF1 affects tRNA suppressor efficiency in Saccharomyces cerevisiae
    • Boguta M., et al. Mutation in a new gene MAF1 affects tRNA suppressor efficiency in Saccharomyces cerevisiae. Gene 1997, 185:291-296.
    • (1997) Gene , vol.185 , pp. 291-296
    • Boguta, M.1
  • 27
    • 30444450804 scopus 로고    scopus 로고
    • A subcomplex of RNA polymerase III subunits involved in transcription termination and reinitiation
    • Landrieux E., et al. A subcomplex of RNA polymerase III subunits involved in transcription termination and reinitiation. EMBO J. 2006, 25:118-128.
    • (2006) EMBO J. , vol.25 , pp. 118-128
    • Landrieux, E.1
  • 28
    • 75649108602 scopus 로고    scopus 로고
    • Multilayered control of gene expression by stress-activated protein kinases
    • de Nadal E., Posas F. Multilayered control of gene expression by stress-activated protein kinases. EMBO J. 2010, 29:4-13.
    • (2010) EMBO J. , vol.29 , pp. 4-13
    • de Nadal, E.1    Posas, F.2
  • 29
    • 61349119934 scopus 로고    scopus 로고
    • Functional organization of the S. cerevisiae phosphorylation network
    • Fiedler D., et al. Functional organization of the S. cerevisiae phosphorylation network. Cell 2009, 136:952-963.
    • (2009) Cell , vol.136 , pp. 952-963
    • Fiedler, D.1
  • 30
    • 79953192748 scopus 로고    scopus 로고
    • MAF1: a new target of mTORC1
    • Michels A.A. MAF1: a new target of mTORC1. Biochem. Soc. Trans. 2011, 39:487-491.
    • (2011) Biochem. Soc. Trans. , vol.39 , pp. 487-491
    • Michels, A.A.1
  • 31
    • 0030840125 scopus 로고    scopus 로고
    • Casein kinase II regulation of yeast TFIIIB is mediated by the TATA-binding protein
    • Ghavidel A., Schultz M.C. Casein kinase II regulation of yeast TFIIIB is mediated by the TATA-binding protein. Genes Dev. 1997, 11:2780-2789.
    • (1997) Genes Dev. , vol.11 , pp. 2780-2789
    • Ghavidel, A.1    Schultz, M.C.2
  • 32
    • 0035823010 scopus 로고    scopus 로고
    • TATA binding protein-associated CK2 transduces DNA damage signals to the RNA polymerase III transcriptional machinery
    • Ghavidel A., Schultz M.C. TATA binding protein-associated CK2 transduces DNA damage signals to the RNA polymerase III transcriptional machinery. Cell 2001, 106:575-584.
    • (2001) Cell , vol.106 , pp. 575-584
    • Ghavidel, A.1    Schultz, M.C.2
  • 33
    • 4944253296 scopus 로고    scopus 로고
    • CK2 phosphorylation of Bdp1 executes cell cycle-specific RNA polymerase III transcription repression
    • Hu P., et al. CK2 phosphorylation of Bdp1 executes cell cycle-specific RNA polymerase III transcription repression. Mol. Cell 2004, 16:81-92.
    • (2004) Mol. Cell , vol.16 , pp. 81-92
    • Hu, P.1
  • 34
    • 0141750428 scopus 로고    scopus 로고
    • A minimal RNA polymerase III transcription system from human cells reveals positive and negative regulatory roles for CK2
    • Hu P., et al. A minimal RNA polymerase III transcription system from human cells reveals positive and negative regulatory roles for CK2. Mol. Cell 2003, 12:699-709.
    • (2003) Mol. Cell , vol.12 , pp. 699-709
    • Hu, P.1
  • 35
    • 0036093940 scopus 로고    scopus 로고
    • CK2 forms a stable complex with TFIIIB and activates RNA polymerase III transcription in human cells
    • Johnston I.M., et al. CK2 forms a stable complex with TFIIIB and activates RNA polymerase III transcription in human cells. Mol. Cell. Biol. 2002, 22:3757-3768.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 3757-3768
    • Johnston, I.M.1
  • 36
    • 0037477418 scopus 로고    scopus 로고
    • DNA damage regulation of the RNA components of the translational apparatus: new biology and mechanisms
    • Schultz M.C. DNA damage regulation of the RNA components of the translational apparatus: new biology and mechanisms. IUBMB Life 2003, 55:243-247.
    • (2003) IUBMB Life , vol.55 , pp. 243-247
    • Schultz, M.C.1
  • 37
    • 70449641057 scopus 로고    scopus 로고
    • Progression through the RNA polymerase II CTD cycle
    • Buratowski S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 2009, 36:541-546.
    • (2009) Mol. Cell , vol.36 , pp. 541-546
    • Buratowski, S.1
  • 38
    • 2442606759 scopus 로고    scopus 로고
    • Genome-wide occupancy profile of the RNA polymerase III machinery in Saccharomyces cerevisiae reveals loci with incomplete transcription complexes
    • Moqtaderi Z., Struhl K. Genome-wide occupancy profile of the RNA polymerase III machinery in Saccharomyces cerevisiae reveals loci with incomplete transcription complexes. Mol. Cell. Biol. 2004, 24:4118-4127.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 4118-4127
    • Moqtaderi, Z.1    Struhl, K.2
  • 39
    • 0141625270 scopus 로고    scopus 로고
    • Genome-wide location of yeast RNA polymerase III transcription machinery
    • Harismendy O., et al. Genome-wide location of yeast RNA polymerase III transcription machinery. EMBO J. 2003, 22:4738-4747.
    • (2003) EMBO J. , vol.22 , pp. 4738-4747
    • Harismendy, O.1
  • 40
    • 0345598934 scopus 로고    scopus 로고
    • The RNA polymerase III transcriptome revealed by genome-wide localization and activity-occupancy relationships
    • Roberts D.N., et al. The RNA polymerase III transcriptome revealed by genome-wide localization and activity-occupancy relationships. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:14695-14700.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 14695-14700
    • Roberts, D.N.1
  • 41
    • 0035967858 scopus 로고    scopus 로고
    • The RNA polymerase III transcription apparatus
    • Geiduschek E.P., Kassavetis G.A. The RNA polymerase III transcription apparatus. J. Mol. Biol. 2001, 310:1-26.
    • (2001) J. Mol. Biol. , vol.310 , pp. 1-26
    • Geiduschek, E.P.1    Kassavetis, G.A.2
  • 42
    • 77951608945 scopus 로고    scopus 로고
    • The increase in the number of subunits in eukaryotic RNA polymerase III relative to RNA polymerase II is due to the permanent recruitment of general transcription factors
    • Carter R., Drouin G. The increase in the number of subunits in eukaryotic RNA polymerase III relative to RNA polymerase II is due to the permanent recruitment of general transcription factors. Mol. Biol. Evol. 2010, 27:1035-1043.
    • (2010) Mol. Biol. Evol. , vol.27 , pp. 1035-1043
    • Carter, R.1    Drouin, G.2
  • 43
    • 16844370286 scopus 로고    scopus 로고
    • Order or chaos? An evaluation of the regulation of protein kinase CK2
    • Olsten M.E., Litchfield D.W. Order or chaos? An evaluation of the regulation of protein kinase CK2. Biochem. Cell Biol. 2004, 82:681-693.
    • (2004) Biochem. Cell Biol. , vol.82 , pp. 681-693
    • Olsten, M.E.1    Litchfield, D.W.2
  • 44
    • 35748978525 scopus 로고    scopus 로고
    • Development of a stabilized form of the regulatory CK2beta subunit that inhibits cell proliferation
    • French A.C., et al. Development of a stabilized form of the regulatory CK2beta subunit that inhibits cell proliferation. J. Biol. Chem. 2007, 282:29667-29677.
    • (2007) J. Biol. Chem. , vol.282 , pp. 29667-29677
    • French, A.C.1
  • 45
    • 38349116517 scopus 로고    scopus 로고
    • Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2
    • Duncan J.S., Litchfield D.W. Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim. Biophys. Acta 2008, 1784:33-47.
    • (2008) Biochim. Biophys. Acta , vol.1784 , pp. 33-47
    • Duncan, J.S.1    Litchfield, D.W.2
  • 46
    • 0037269847 scopus 로고    scopus 로고
    • Protein kinase CK2: structure, regulation and role in cellular decisions of life and death
    • Litchfield D.W. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem. J. 2003, 369:1-15.
    • (2003) Biochem. J. , vol.369 , pp. 1-15
    • Litchfield, D.W.1
  • 47
    • 0028828102 scopus 로고
    • Cell cycle regulation of RNA polymerase III transcription
    • White R.J., et al. Cell cycle regulation of RNA polymerase III transcription. Mol. Cell. Biol. 1995, 15:6653-6662.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 6653-6662
    • White, R.J.1
  • 48
    • 33750207621 scopus 로고    scopus 로고
    • CK2-mediated stimulation of Pol I transcription by stabilization of UBF-SL1 interaction
    • Lin C.Y., et al. CK2-mediated stimulation of Pol I transcription by stabilization of UBF-SL1 interaction. Nucleic Acids Res. 2006, 34:4752-4766.
    • (2006) Nucleic Acids Res. , vol.34 , pp. 4752-4766
    • Lin, C.Y.1
  • 49
    • 49449101955 scopus 로고    scopus 로고
    • Phosphorylation by casein kinase 2 facilitates rRNA gene transcription by promoting dissociation of TIF-IA from elongating RNA polymerase I
    • Bierhoff H., et al. Phosphorylation by casein kinase 2 facilitates rRNA gene transcription by promoting dissociation of TIF-IA from elongating RNA polymerase I. Mol. Cell. Biol. 2008, 28:4988-4998.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 4988-4998
    • Bierhoff, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.