메뉴 건너뛰기




Volumn 183, Issue 1, 2011, Pages 1-25

Extracting compact and information lossless sets of fuzzy association rules

Author keywords

Axiomatic system; Fuzzy Galois connection; Fuzzy generic association rules; Fuzzy sets

Indexed keywords

AXIOMATIC SYSTEM; BENCHMARK DATASETS; DATA SETS; DISCRETIZATIONS; FUZZY ASSOCIATION RULE; FUZZY CONTEXTS; FUZZY GENERIC ASSOCIATION RULES; GALOIS CONNECTION; GENERIC BASIS; INFORMATION LOSS; LOSSLESS; REDUNDANT RULES;

EID: 80052265035     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2011.06.019     Document Type: Article
Times cited : (33)

References (31)
  • 2
    • 0033281173 scopus 로고    scopus 로고
    • FARM: A data mining system for discovering fuzzy association rules
    • Seoul, South Korea, November 1999
    • W. Au, K. Chan, FARM: a data mining system for discovering fuzzy association rules, in: Proceedings of the 18th IEEE International Conference of FUZZ-IEEE99, vol. III, Seoul, South Korea, November 1999, pp. 22-25.
    • Proceedings of the 18th IEEE International Conference of FUZZ-IEEE99 , vol.3 , pp. 22-25
    • Au, W.1    Chan, K.2
  • 6
    • 69749098126 scopus 로고    scopus 로고
    • A new generic basis of factual and implicative association rules
    • S. Ben Yahia, G. Gasmi, and E. Mephu Nguifo A new generic basis of factual and implicative association rules Intelligent Data Analysis 13 4 2009 633 656
    • (2009) Intelligent Data Analysis , vol.13 , Issue.4 , pp. 633-656
    • Ben Yahia, S.1    Gasmi, G.2    Mephu Nguifo, E.3
  • 8
    • 4944260909 scopus 로고    scopus 로고
    • Measuring the accuracy and interest of association rules: A new framework
    • F. Berzal, I. Blanco, D. Sanchez, and M. Vila Measuring the accuracy and interest of association rules: a new framework Intelligent Data Analysis 6 3 2002 221 235
    • (2002) Intelligent Data Analysis , vol.6 , Issue.3 , pp. 221-235
    • Berzal, F.1    Blanco, I.2    Sanchez, D.3    Vila, M.4
  • 10
    • 37349102395 scopus 로고    scopus 로고
    • Mining association rules from imprecise ordinal data
    • DOI 10.1016/j.fss.2007.10.005, PII S0165011407004666
    • C-H. Weng, and Y.-L. Chen Mining fuzzy association rules from imprecise ordinal data Fuzzy Sets and Systems 159 2008 460 474 (Pubitemid 350298585)
    • (2008) Fuzzy Sets and Systems , vol.159 , Issue.4 , pp. 460-474
    • Chen, Y.-L.1    Weng, C.-H.2
  • 11
    • 77952094602 scopus 로고    scopus 로고
    • Mining fuzzy association rules from uncertain data
    • C-H. Weng, and Y.-L. Chen Mining fuzzy association rules from uncertain data Knowledge Information Systems 23 2 2009 129 152
    • (2009) Knowledge Information Systems , vol.23 , Issue.2 , pp. 129-152
    • Weng, C.-H.1    Chen, Y.-L.2
  • 12
    • 0002682767 scopus 로고    scopus 로고
    • Fuzzy data mining: Discovery of fuzzy generalized association rules
    • G. Bordogna, G. Pasi, Springer-Verlag
    • G. Chen, Q. Wei, and E.E. Kerre Fuzzy data mining: discovery of fuzzy generalized association rules G. Bordogna, G. Pasi, Recent Issues on Fuzzy Databases 2000 Springer-Verlag
    • (2000) Recent Issues on Fuzzy Databases
    • Chen, G.1    Wei, Q.2    Kerre, E.E.3
  • 14
    • 33748458842 scopus 로고    scopus 로고
    • A systematic approach to the assessment of fuzzy association rules
    • DOI 10.1007/s10618-005-0032-4
    • D. Dubois, E. Hüllermeier, and H. Prade A systematic approach to the assessment of fuzzy association rules Data Mining and Knowledge Discovery 13 2 2006 167 192 (Pubitemid 44352881)
    • (2006) Data Mining and Knowledge Discovery , vol.13 , Issue.2 , pp. 167-192
    • Dubois, D.1    Hullermeier, E.2    Prade, H.3
  • 15
    • 44949276212 scopus 로고
    • Fuzzy sets in approximate reasoning, part II: Logical approaches
    • D. Dubois, and H. Prade Fuzzy sets in approximate reasoning, part II: logical approaches Fuzzy Sets and Systems 40 1991 203 244
    • (1991) Fuzzy Sets and Systems , vol.40 , pp. 203-244
    • Dubois, D.1    Prade, H.2
  • 16
    • 17744368529 scopus 로고    scopus 로고
    • On the representation, measurement, and discovery of fuzzy associations
    • DOI 10.1109/TFUZZ.2004.840130
    • D. Dubois, H. Prade, and T. Sudkamp On the representation, measurement, and discovery of fuzzy associations IEEE Transactions on Fuzzy Systems 13 2 2005 250 262 (Pubitemid 40573239)
    • (2005) IEEE Transactions on Fuzzy Systems , vol.13 , Issue.2 , pp. 250-262
    • Dubois, D.1    Prade, H.2    Sudkamp, T.3
  • 21
    • 84894635116 scopus 로고    scopus 로고
    • R, Master Thesis, Vienna University of Economics and Business Administration, Vienna, August 2007
    • B.L. Helm, Fuzzy Association Rules an Implementation in R, Master Thesis, Vienna University of Economics and Business Administration, Vienna, August 2007.
    • Fuzzy Association Rules An Implementation
    • Helm, B.L.1
  • 22
    • 84947808231 scopus 로고    scopus 로고
    • Representative Association Rules and Minimum Condition Maximum Consequence Association Rules
    • Principles of Data Mining and Knowledge Discovery
    • M. Kryszkiewicz Representative association rules and minimum condition maximum consequence association rules Proceedings of Second European Symposium on Principles of Data Mining and Knowledge Discovery (PKDD), Lecture Notes in Computer Science vol. 1510 1998 Springer-Verlag Nantes, France 361 369 (Pubitemid 128145855)
    • (1998) Lecture Notes in Computer Science , Issue.1510 , pp. 361-369
    • Kryszkiewicz, M.1
  • 26
    • 0030157416 scopus 로고    scopus 로고
    • Mining Quantitative Association Rules in Large Relational Tables
    • R. Srikant, and R. Agrawal Mining quantitative association rules in large relational tables Proceedings of the ACM SIGMOD International Conference on Management of data (SIGMOD 96), Montreal, Canada, June 1996 1 12 (Pubitemid 126440751)
    • (1996) SIGMOD Record (ACM Special Interest Group on Management of Data) , vol.25 , Issue.2 , pp. 1-12
    • Srikant, R.1    Agrawal, R.2
  • 28
    • 29544433219 scopus 로고    scopus 로고
    • Mining association rules with interestingness constraints in large databases
    • S.-M. Tseng Mining association rules with interestingness constraints in large databases International Journal of Fuzzy Systems 3 2 2001 415 421
    • (2001) International Journal of Fuzzy Systems , vol.3 , Issue.2 , pp. 415-421
    • Tseng, S.-M.1
  • 29
    • 0000499483 scopus 로고    scopus 로고
    • Weighted fuzzy production rules
    • PII S0165011496000528
    • D. Yeung, and E. Tsang Weighted fuzzy production rules Fuzzy Sets and Systems 88 1997 299 313 (Pubitemid 127683659)
    • (1997) Fuzzy Sets and Systems , vol.88 , Issue.3 , pp. 299-313
    • Yeung, D.S.1    Tsang, E.C.C.2
  • 31
    • 4444337294 scopus 로고    scopus 로고
    • Mining non-redundant association rules
    • DOI 10.1023/B:DAMI.0000040429.96086.c7
    • M.J. Zaki Mining non-redundant association rules Data Mining and Knowledge Discovery 9 2004 223 248 (Pubitemid 39193158)
    • (2004) Data Mining and Knowledge Discovery , vol.9 , Issue.3 , pp. 223-248
    • Zaki, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.