메뉴 건너뛰기




Volumn , Issue , 2011, Pages 177-180

Adaptive Bayesian network for traffic flow prediction

Author keywords

Bayesian network; Gaussian mixture model; graphical model; mutual information; Traffic flow forecasting

Indexed keywords

EXPERIMENTAL TEST; GAUSSIAN MIXTURE MODEL; GRAPH OPTIMIZATION; GRAPHICAL MODEL; GRAPHICAL MODELING; LOS ANGELES; MONITORING SYSTEM; MUTUAL INFORMATIONS; NETWORK TOPOLOGY; NONSTATIONARY; SAFE MOBILITY; SPATIAL-TEMPORAL EVOLUTION; SUPPORT OPERATIONS; TRAFFIC DYNAMICS; TRAFFIC FLOW; TRAFFIC FLOW FORECASTING; TRAFFIC FLOW PREDICTION; TRAFFIC MANAGEMENT;

EID: 80052245483     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SSP.2011.5967651     Document Type: Conference Paper
Times cited : (71)

References (9)
  • 1
    • 80052247585 scopus 로고    scopus 로고
    • PeMS project, https://pems.eecs.berkeley.edu/.
  • 2
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: Comparison of modeling approaches
    • July/August
    • B. L. Smith, M.J. Demetsky, "Traffic Flow Forecasting: Comparison of Modeling Approaches," J. of Trans. Eng.,vol. 123, issue 4, pp. 261-266, July/August 1997.
    • (1997) J. of Trans. Eng. , vol.123 , Issue.4 , pp. 261-266
    • Smith, B.L.1    Demetsky, M.J.2
  • 3
    • 33644989492 scopus 로고    scopus 로고
    • A bayesian network approach to traffic flow forecasting
    • March
    • S. Sun, C. Zhang, G. Yu, "A Bayesian Network Approach to Traffic Flow Forecasting," IEEE, Trans. on Intell. Transp. Syst.,vol. 7, no. 1, pp.124-132, March 2006.
    • (2006) IEEE, Trans. on Intell. Transp. Syst. , vol.7 , Issue.1 , pp. 124-132
    • Sun, S.1    Zhang, C.2    Yu, G.3
  • 4
    • 85032752145 scopus 로고    scopus 로고
    • Graphical models for time series
    • Nov
    • D. Barber, A.T. Cemgil, "Graphical Models for Time Series," IEEE Sign. Proc. Mag., vol. 27, issue 6, pp. 18-28, Nov 2010.
    • (2010) IEEE Sign. Proc. Mag. , vol.27 , Issue.6 , pp. 18-28
    • Barber, D.1    Cemgil, A.T.2
  • 5
    • 66549102138 scopus 로고    scopus 로고
    • Intervention and causality: Forecasting traffic flows using a dynamic bayesian network
    • June
    • C.M. Queen, C.J. ALbers, "Intervention and Causality: Forecasting Traffic Flows Using a Dynamic Bayesian Network," J. Amer. Statist. Assoc., vol. 104, no. 486, pp. 669-681, June 2009.
    • (2009) J. Amer. Statist. Assoc. , vol.104 , Issue.486 , pp. 669-681
    • Queen, C.M.1    Albers, C.J.2
  • 7
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. P. Dempster, N.M. Laird, D.B. Rubin, "Maximum Likelihood from Incomplete Data via the EM Algorithm," J. R. Statist. Soc., vol. 39, no.1, pp 1-38, 1977.
    • (1977) J. R. Statist. Soc. , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 8
    • 0037317897 scopus 로고    scopus 로고
    • Efficient greedy learning of gaussian mixture models
    • February
    • J.J. Verbeek, N. Vlassis, B. Krose, "Efficient Greedy Learning of Gaussian Mixture Models," Neural Comput., vol.15, issue 2, pp. 469-485, February 2003.
    • (2003) Neural Comput. , vol.15 , Issue.2 , pp. 469-485
    • Verbeek, J.J.1    Vlassis, N.2    Krose, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.