-
1
-
-
0003856008
-
-
W. H. Freeman and Co., San Francisco, Calif, The three-point curvature appears on
-
Leonard M. Blumenthal and Karl Menger. Studies in geometry. W. H. Freeman and Co., San Francisco, Calif., 1970. (The three-point curvature appears on page 320).
-
(1970)
Studies in geometry
, pp. 320
-
-
Blumenthal, L.M.1
Menger, K.2
-
2
-
-
11744273384
-
The surface evolver
-
Kenneth A. Brakke. The surface evolver. Experiment. Math., 1 (2): 141-165, 1992.
-
(1992)
Experiment. Math.
, vol.1
, Issue.2
, pp. 141-165
-
-
Brakke, K.A.1
-
3
-
-
0013104699
-
A simple energy function for knots
-
Gregory Buck and Jeremey Orloff. A simple energy function for knots. Topology Appl., 61(3):205-214, 1995.
-
(1995)
Topology Appl.
, vol.61
, Issue.3
, pp. 205-214
-
-
Buck, G.1
Orloff, J.2
-
4
-
-
33644699278
-
-
arXiv:math.DG/0402212
-
Jason Cantarella, Joseph H.G. Fu, Robert B. Kusner, John M. Sullivan, and Nancy Wrinkle. Criticality for the Gehring link problem. arXiv:math.DG/0402212, 2004.
-
(2004)
Criticality for the Gehring link problem
-
-
Cantarella, J.1
Fu, J.H.G.2
Kusner, R.B.3
Sullivan, J.M.4
Wrinkle, N.5
-
5
-
-
0035981373
-
On the minimum ropelength of knots and links
-
Jason Cantarella, Robert B. Kusner, and John M. Sullivan. On the minimum ropelength of knots and links. Invent. Math., 150(2):257-286, 2002.
-
(2002)
Invent. Math.
, vol.150
, Issue.2
, pp. 257-286
-
-
Cantarella, J.1
Kusner, R.B.2
Sullivan, J.M.3
-
6
-
-
85115930324
-
Biarcs, global radius of curvature, and the computation of ideal knot shapes
-
World Scientific
-
Mathias Carlen, Ben Laurie, John H. Maddocks, and Jana Smutny. Biarcs, global radius of curvature, and the computation of ideal knot shapes. In Physical and Numerical Models in Knot Theory and Their Application to the Life Sciences. World Scientific, 2005.
-
(2005)
Physical and Numerical Models in Knot Theory and Their Application to the Life Sciences
-
-
Carlen, M.1
Laurie, B.2
Maddocks, J.H.3
Smutny, J.4
-
7
-
-
0020249952
-
An effective way to represent Quadtrees
-
Irene Gargantini. An effective way to represent Quadtrees. Commun. ACM, 25(12):905-910, 1982.
-
(1982)
Commun. ACM
, vol.25
, Issue.12
, pp. 905-910
-
-
Gargantini, I.1
-
9
-
-
0036461761
-
Global curvature and self-contact of nonlinearly elastic curves and rods
-
O. Gonzalez, J. H. Maddocks, F. Schuricht, and H. von der Mosel. Global curvature and self-contact of nonlinearly elastic curves and rods. Calc. Var. Partial Differential Equations, 14(1):29-68, 2002.
-
(2002)
Calc. Var. Partial Differential Equations
, vol.14
, Issue.1
, pp. 29-68
-
-
Gonzalez, O.1
Maddocks, J.H.2
Schuricht, F.3
von der Mosel, H.4
-
10
-
-
0033608997
-
Global curvature, thickness, and the ideal shapes of knots
-
electronic
-
Oscar Gonzalez and John H. Maddocks. Global curvature, thickness, and the ideal shapes of knots. Proc. Natl. Acad. Sci. USA, 96(9):4769-4773 (electronic), 1999.
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, Issue.9
, pp. 4769-4773
-
-
Gonzalez, O.1
Maddocks, J.H.2
-
11
-
-
0019229538
-
Oct-trees and their use in representing three-dimensional objects
-
Chris L. Jackins and Steven L. Tanimoto. Oct-trees and their use in representing three-dimensional objects. Comp. Graphics and Image Proc., 14:249-270, 1980.
-
(1980)
Comp. Graphics and Image Proc.
, vol.14
, pp. 249-270
-
-
Jackins, C.L.1
Tanimoto, S.L.2
-
14
-
-
84990701289
-
Non-recursive functions, knots “with thick ropes”, and self-clenching “thick” hyperspheres
-
Alexander Nabutovsky. Non-recursive functions, knots “with thick ropes”, and self-clenching “thick” hyperspheres. Comm. Pure Appl. Math., 48(4):381-428, 1995.
-
(1995)
Comm. Pure Appl. Math.
, vol.48
, Issue.4
, pp. 381-428
-
-
Nabutovsky, A.1
-
15
-
-
0002828937
-
In search of ideal knots
-
Ser. Knots Everything, World Sci. Publishing, River Edge, NJ
-
Piotr Pierański. In search of ideal knots. In Ideal knots, volume 19 of Ser. Knots Everything, pages 20-41. World Sci. Publishing, River Edge, NJ, 1998.
-
(1998)
Ideal knots
, vol.19
, pp. 20-41
-
-
Pierański, P.1
-
18
-
-
84944104796
-
Bit interieaving for Quad- or Octrees
-
Andrew S. Glassner, editor, Morgan Kauffman
-
Clifford A. Shaffer. Bit interieaving for Quad- or Octrees. In Andrew S. Glassner, editor, Graphics Gems, pages 443-447. Morgan Kauffman, 1990.
-
(1990)
Graphics Gems
, pp. 443-447
-
-
Shaffer, C.A.1
-
20
-
-
85097852796
-
A constructive approach to modelling the tight shapes of some linked structures
-
Eugene L. Starostin. A constructive approach to modelling the tight shapes of some linked structures. Proc. Appl. Math. Mech., 3:479-480, 2003.
-
(2003)
Proc. Appl. Math. Mech.
, vol.3
, pp. 479-480
-
-
Starostin, E.L.1
|