메뉴 건너뛰기




Volumn 12, Issue 6, 2011, Pages 672-688

Critical assessment of high-throughput standalone methods for secondary structure prediction

Author keywords

Protein structure; Secondary structure; Secondary structure prediction

Indexed keywords

PROTEIN; SOLVENT;

EID: 80052202875     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbq088     Document Type: Article
Times cited : (53)

References (64)
  • 1
    • 76549252207 scopus 로고
    • The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain
    • Pauling L, Corey RB, Branson HR. The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci USA 1951;37:205-11.
    • (1951) Proc Natl Acad Sci USA , vol.37 , pp. 205-211
    • Pauling, L.1    Corey, R.B.2    Branson, H.R.3
  • 2
    • 76549238253 scopus 로고
    • The pleated sheet, a new layer configuration of polypeptide chains
    • Pauling L, Corey RB. The pleated sheet, a new layer configuration of polypeptide chains. Proc Natl Acad Sci USA 1951;37:251-6.
    • (1951) Proc Natl Acad Sci USA , vol.37 , pp. 251-256
    • Pauling, L.1    Corey, R.B.2
  • 3
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: pattern recognition of hydrogen bonded and geometrical features
    • Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen bonded and geometrical features. Biopolymers 1983;22:2577-637.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 4
    • 0029619259 scopus 로고
    • Knowledge-based protein secondary structure assignment
    • Frishman D, Argos P. Knowledge-based protein secondary structure assignment. Proteins 1995;23:566-79.
    • (1995) Proteins , vol.23 , pp. 566-579
    • Frishman, D.1    Argos, P.2
  • 5
    • 0030998184 scopus 로고    scopus 로고
    • P-SEA: a new efficient assignment of secondary structure from C alpha trace of proteins
    • Labesse G, Colloc'h N, Pothier J, et al. P-SEA: a new efficient assignment of secondary structure from C alpha trace of proteins. Comput Appl Biosci 1997;13:291-5.
    • (1997) Comput Appl Biosci , vol.13 , pp. 291-295
    • Labesse, G.1    Colloc'h, N.2    Pothier, J.3
  • 6
    • 0033562619 scopus 로고    scopus 로고
    • Assigning secondary structure from protein coordinate data
    • King SM, Johnson WC. Assigning secondary structure from protein coordinate data. Proteins 1999;3:313-20.
    • (1999) Proteins , vol.3 , pp. 313-320
    • King, S.M.1    Johnson, W.C.2
  • 7
    • 0036276409 scopus 로고    scopus 로고
    • Occurrence, conformational features and amino acid propensities for the pi-helix
    • Fodje MN, Al-Karadaghi S. Occurrence, conformational features and amino acid propensities for the pi-helix. Protein Eng 2002;15:353-58.
    • (2002) Protein Eng , vol.15 , pp. 353-358
    • Fodje, M.N.1    Al-Karadaghi, S.2
  • 8
    • 26444452027 scopus 로고    scopus 로고
    • Protein secondary structure assignment revisited: a detailed analysis of different assignment methods
    • Martin J, Letellier G, Marin A, et al. Protein secondary structure assignment revisited: a detailed analysis of different assignment methods. BMC Struct Biol 2005;5:17.
    • (2005) BMC Struct Biol , vol.5 , pp. 17
    • Martin, J.1    Letellier, G.2    Marin, A.3
  • 10
    • 84995046262 scopus 로고
    • A large-scale experiment to assess protein structure prediction methods
    • Moult J, Pedersen JT, Judson R, et al. A large-scale experiment to assess protein structure prediction methods. Proteins 1995;23(3):ii-v.
    • (1995) Proteins , vol.23 , Issue.3
    • Moult, J.1    Pedersen, J.T.2    Judson, R.3
  • 11
    • 0043123211 scopus 로고    scopus 로고
    • EVA: evaluation of protein structure prediction servers
    • Koh IY, Eyrich VA, Marti-Renom MA, et al. EVA: evaluation of protein structure prediction servers. Nucleic Acids Res 2003;31:3311-5.
    • (2003) Nucleic Acids Res , vol.31 , pp. 3311-3315
    • Koh, I.Y.1    Eyrich, V.A.2    Marti-Renom, M.A.3
  • 12
    • 0013817874 scopus 로고
    • The influence of amino-acid sequence on protein structure
    • Guzzo AV. The influence of amino-acid sequence on protein structure. Biophys J 1965;5:809-22.
    • (1965) Biophys J , vol.5 , pp. 809-822
    • Guzzo, A.V.1
  • 13
    • 79951811236 scopus 로고    scopus 로고
    • Prediction of protein structure in 1D -secondary structure, membrane regions, and solvent accessibility
    • Bourne PE, Weissig H, (eds). 2nd edn. Hoboken, New Jersey, USA: Wiley
    • Rost B. Prediction of protein structure in 1D -secondary structure, membrane regions, and solvent accessibility. In: Bourne PE, Weissig H, (eds). Structural Bioinformatics. 2nd edn. Hoboken, New Jersey, USA: Wiley 2009;679-714.
    • (2009) Structural Bioinformatics , pp. 679-714
    • Rost, B.1
  • 14
    • 0034571628 scopus 로고    scopus 로고
    • Third generation prediction of secondary structure
    • Webster D, (ed). Totowa, New Jersey, USA: Humana Press
    • Rost B, Sander C. Third generation prediction of secondary structure. In: Webster D, (ed). Protein Structure Prediction: Methods and Protocols. Totowa, New Jersey, USA: Humana Press, 2000;71-95.
    • (2000) Protein Structure Prediction: Methods and Protocols , pp. 71-95
    • Rost, B.1    Sander, C.2
  • 15
    • 0035698737 scopus 로고    scopus 로고
    • Eva: large-scale analysis of secondary structure prediction
    • Rost B, Eyrich VA. Eva: large-scale analysis of secondary structure prediction. Proteins 2001;45(Suppl. 5): 192-9.
    • (2001) Proteins , vol.45 , Issue.SUPPL. 5 , pp. 192-199
    • Rost, B.1    Eyrich, V.A.2
  • 16
    • 33747586510 scopus 로고    scopus 로고
    • Improving the accuracy of protein secondary structure prediction using structural alignment
    • Montgomerie S, Sundararaj S, Gallin WJ, et al. Improving the accuracy of protein secondary structure prediction using structural alignment. BMC Bioinformatics 2006;7:301.
    • (2006) BMC Bioinformatics , vol.7 , pp. 301
    • Montgomerie, S.1    Sundararaj, S.2    Gallin, W.J.3
  • 17
    • 23144465987 scopus 로고    scopus 로고
    • SCRATCH: a protein structure and structural feature prediction server
    • Cheng J, Randall AZ, Sweredoski MJ, et al. SCRATCH: a protein structure and structural feature prediction server. Nucleic Acid Res 2005;33:W72-6.
    • (2005) Nucleic Acid Res , vol.33
    • Cheng, J.1    Randall, A.Z.2    Sweredoski, M.J.3
  • 18
    • 0035782925 scopus 로고    scopus 로고
    • Protein secondary structure continues to rise
    • Rost B. Protein secondary structure continues to rise. J StructBiol 2001;134:204-18.
    • (2001) J StructBiol , vol.134 , pp. 204-218
    • Rost, B.1
  • 19
    • 23644456329 scopus 로고    scopus 로고
    • The effect of long-range interactions on the secondary structure formation of proteins
    • Kihara D. The effect of long-range interactions on the secondary structure formation of proteins. Protein Sci 2005;14: 1955-63.
    • (2005) Protein Sci , vol.14 , pp. 1955-1963
    • Kihara, D.1
  • 20
    • 77952748293 scopus 로고    scopus 로고
    • Protein secondary structure prediction
    • Pirovano W, Heringa J. Protein secondary structure prediction. Methods Mol Biol 2010;609:327-48.
    • (2010) Methods Mol Biol , vol.609 , pp. 327-348
    • Pirovano, W.1    Heringa, J.2
  • 21
    • 23144444979 scopus 로고    scopus 로고
    • Protein structure prediction servers at University College London
    • Bryson K, McGuffin LJ, Marsden RL, etal. Protein structure prediction servers at University College London. Nucleic Acid Res 2005;33:W36-8.
    • (2005) Nucleic Acid Res , vol.33
    • Bryson, K.1    McGuffin, L.J.2    Marsden, R.L.3
  • 22
    • 0036139410 scopus 로고    scopus 로고
    • EVA: continuous automatic evaluation of protein structure prediction servers
    • Eyrich VA, Marti-Renom MA, Przybylski D, et al. EVA: continuous automatic evaluation of protein structure prediction servers. Bioinformatics 2001;17(12):1242-3.
    • (2001) Bioinformatics , vol.17 , Issue.12 , pp. 1242-1243
    • Eyrich, V.A.1    Marti-Renom, M.A.2    Przybylski, D.3
  • 23
    • 0029889988 scopus 로고    scopus 로고
    • PHD: predicting one-dimensional protein structure by profile-based neural networks
    • Rost B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol 1996; 266:525-39.
    • (1996) Methods Enzymol , vol.266 , pp. 525-539
    • Rost, B.1
  • 24
    • 17444397116 scopus 로고    scopus 로고
    • Porter: a new, accurate server for protein secondary structure prediction
    • Pollastri G, McLysaght A. Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 2005; 21(8):1719-20.
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1719-1720
    • Pollastri, G.1    McLysaght, A.2
  • 25
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones DT. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999;292: 195-202.
    • (1999) J Mol Biol , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 26
    • 17844392864 scopus 로고    scopus 로고
    • Combining prediction of secondary structure and solvent accessibility in proteins
    • Adamczak R, Porollo A, Meller J. Combining prediction of secondary structure and solvent accessibility in proteins. Proteins 2005;59:467-75.
    • (2005) Proteins , vol.59 , pp. 467-475
    • Adamczak, R.1    Porollo, A.2    Meller, J.3
  • 27
    • 0036568279 scopus 로고    scopus 로고
    • Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
    • Pollastri G, Przybylski D, Rost B, et al. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 2002;47:228-35.
    • (2002) Proteins , vol.47 , pp. 228-235
    • Pollastri, G.1    Przybylski, D.2    Rost, B.3
  • 28
    • 13444266488 scopus 로고    scopus 로고
    • A simple and fast secondary structure prediction algorithm using hidden neural networks
    • Lin K, Simossis VA, Taylor WR, et al. A simple and fast secondary structure prediction algorithm using hidden neural networks. Bioinformatics 2005;21:152-9.
    • (2005) Bioinformatics , vol.21 , pp. 152-159
    • Lin, K.1    Simossis, V.A.2    Taylor, W.R.3
  • 29
    • 33847073796 scopus 로고    scopus 로고
    • Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training
    • Dor O, Zhou Y. Achieving 80% ten-fold cross-validated accuracy for secondary structure prediction by large-scale training. Proteins 2007;66:838-45.
    • (2007) Proteins , vol.66 , pp. 838-845
    • Dor, O.1    Zhou, Y.2
  • 30
    • 70350738241 scopus 로고    scopus 로고
    • Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction
    • Faraggi E, Yang Y, Zhang S, et al. Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction. Structure 2009;17:1515-27.
    • (2009) Structure , vol.17 , pp. 1515-1527
    • Faraggi, E.1    Yang, Y.2    Zhang, S.3
  • 31
    • 48449093089 scopus 로고    scopus 로고
    • PROTEUS2: a web server for comprehensive protein structure prediction and structure-based annotation
    • Montgomerie S, Cruz JA, Shrivastava S, et al. PROTEUS2: a web server for comprehensive protein structure prediction and structure-based annotation. Nucleic Acids Res 2008;36: W202-9.
    • (2008) Nucleic Acids Res , vol.36
    • Montgomerie, S.1    Cruz, J.A.2    Shrivastava, S.3
  • 32
    • 48449106792 scopus 로고    scopus 로고
    • The Jpred 3 secondary structure prediction server
    • Cole C, Barber JD, Barton GJ. The Jpred 3 secondary structure prediction server. Nucleic Acid Res 2008;36: W197-201.
    • (2008) Nucleic Acid Res , vol.36
    • Cole, C.1    Barber, J.D.2    Barton, G.J.3
  • 33
    • 77951221728 scopus 로고    scopus 로고
    • Protein structure prediction begins well but ends badly
    • Saunders R, Deane CM. Protein structure prediction begins well but ends badly. Proteins 2010;78(5):1282-90.
    • (2010) Proteins , vol.78 , Issue.5 , pp. 1282-1290
    • Saunders, R.1    Deane, C.M.2
  • 34
    • 43749106895 scopus 로고    scopus 로고
    • On the relation between the predicted secondary structure and the protein size
    • Kurgan L. On the relation between the predicted secondary structure and the protein size. Protein J 2008;24(4):234-9.
    • (2008) Protein J , vol.24 , Issue.4 , pp. 234-239
    • Kurgan, L.1
  • 35
    • 33947213875 scopus 로고    scopus 로고
    • Membrane protein prediction methods
    • Punta M, Forrest LR, Bigelow H, et al. Membrane protein prediction methods. Methods 2007;41(4):460-74.
    • (2007) Methods , vol.41 , Issue.4 , pp. 460-474
    • Punta, M.1    Forrest, L.R.2    Bigelow, H.3
  • 36
    • 73449095502 scopus 로고    scopus 로고
    • Bioinformatic approaches for the structure and function of membrane proteins
    • Nam HJ, Jeon J, Kim S. Bioinformatic approaches for the structure and function of membrane proteins. BMB Rep 2009;42(11):697-704.
    • (2009) BMB Rep , vol.42 , Issue.11 , pp. 697-704
    • Nam, H.J.1    Jeon, J.2    Kim, S.3
  • 37
    • 48749084114 scopus 로고    scopus 로고
    • MemBrain: improving the accuracy of predicting transmembrane helices
    • Shen H, Chou JJ. MemBrain: improving the accuracy of predicting transmembrane helices. PLoS One 2008;3(6): e2399.
    • (2008) PLoS One , vol.3 , Issue.6
    • Shen, H.1    Chou, J.J.2
  • 38
    • 78449291635 scopus 로고    scopus 로고
    • Influence of assignment on the prediction of transmembrane helices in protein structures
    • Pylouster J, Bornot A, Etchebes TC, de Brevern AG. Influence of assignment on the prediction of transmembrane helices in protein structures. Amino Acids 2010;39(5): 1241-54.
    • (2010) Amino Acids , vol.39 , Issue.5 , pp. 1241-1254
    • Pylouster, J.1    Bornot, A.2    Etchebes, T.C.3    de Brevern, A.G.4
  • 39
    • 77951614017 scopus 로고    scopus 로고
    • TOPTMH: topology predictor for transmembrane alpha-helices
    • Ahmed R, Rangwala H, Karypis G. TOPTMH: topology predictor for transmembrane alpha-helices. J Bioinform Comput Biol 2010;8(1):39-57.
    • (2010) J Bioinform Comput Biol , vol.8 , Issue.1 , pp. 39-57
    • Ahmed, R.1    Rangwala, H.2    Karypis, G.3
  • 40
    • 77955411469 scopus 로고    scopus 로고
    • A highly accurate statistical approach for the prediction of transmembrane beta-barrels
    • Freeman TC Jr, Wimley WC. A highly accurate statistical approach for the prediction of transmembrane beta-barrels. Bioinformatics 2010;26(16):1965-74.
    • (2010) Bioinformatics , vol.26 , Issue.16 , pp. 1965-1974
    • Freeman Jr., T.C.1    Wimley, W.C.2
  • 41
    • 0043180474 scopus 로고    scopus 로고
    • PISCES: a protein sequence culling server
    • Wang G, Dunbrack RL Jr. PISCES: a protein sequence culling server. Bioinformatics 2003;19:1589-91.
    • (2003) Bioinformatics , vol.19 , pp. 1589-1591
    • Wang, G.1    Dunbrack Jr., R.L.2
  • 42
    • 0033081846 scopus 로고    scopus 로고
    • A modified definition of SOV, a segment-based measure for protein secondary structure prediction assessment
    • Zemla A, Venclovas C, Fidelis K, et al. A modified definition of SOV, a segment-based measure for protein secondary structure prediction assessment. Proteins 1999;34(2): 220-3.
    • (1999) Proteins , vol.34 , Issue.2 , pp. 220-223
    • Zemla, A.1    Venclovas, C.2    Fidelis, K.3
  • 43
    • 0000898845 scopus 로고
    • An analysis of variance test for normality (complete samples)
    • Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika 1965;52(3-4): P591-611.
    • (1965) Biometrika , vol.52 , Issue.3-4
    • Shapiro, S.S.1    Wilk, M.B.2
  • 44
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bull 1945;1:80-3.
    • (1945) Biometrics Bull , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 45
    • 36049007258 scopus 로고    scopus 로고
    • An evolutionary method for learning HMM structure: prediction of protein secondary structure
    • Won KJ, Hamelryck T, Prügel-Bennett A, et al. An evolutionary method for learning HMM structure: prediction of protein secondary structure. BMC Bioinformatics 2007;8:357.
    • (2007) BMC Bioinformatics , vol.8 , pp. 357
    • Won, K.J.1    Hamelryck, T.2    Prügel-Bennett, A.3
  • 47
    • 0034663597 scopus 로고    scopus 로고
    • Application of multiple sequence alignment profiles to improve protein secondary structure prediction
    • Cuff JA, Barton GJ. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 2000;40:502-11.
    • (2000) Proteins , vol.40 , pp. 502-511
    • Cuff, J.A.1    Barton, G.J.2
  • 48
    • 33847001252 scopus 로고    scopus 로고
    • Analysis of an optimal hidden Markov model for secondary structure prediction
    • Martin J, Gibrat JF, Rodolphe F. Analysis of an optimal hidden Markov model for secondary structure prediction. BMC Struct Biol 2006;6:25.
    • (2006) BMC Struct Biol , vol.6 , pp. 25
    • Martin, J.1    Gibrat, J.F.2    Rodolphe, F.3
  • 49
    • 0042379959 scopus 로고    scopus 로고
    • Simple consensus procedures are effective and sufficient in secondary structure prediction
    • Albrecht M, Tosatto SC, Lengauer T, et al. Simple consensus procedures are effective and sufficient in secondary structure prediction. Protein Eng 2003;16(7):459-62.
    • (2003) Protein Eng , vol.16 , Issue.7 , pp. 459-462
    • Albrecht, M.1    Tosatto, S.C.2    Lengauer, T.3
  • 50
    • 33747880465 scopus 로고    scopus 로고
    • Ensemble classifier for protein fold pattern recognition
    • Shen HB, Chou KC. Ensemble classifier for protein fold pattern recognition. Bioinformatics 2006;22(14):1717-22.
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. 1717-1722
    • Shen, H.B.1    Chou, K.C.2
  • 51
    • 36448960843 scopus 로고    scopus 로고
    • PFRES: protein fold classification by using evolutionary information and predicted secondary structure
    • Chen K, Kurgan L. PFRES: protein fold classification by using evolutionary information and predicted secondary structure. Bioinformatics 2007;23(21):2843-50.
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2843-2850
    • Chen, K.1    Kurgan, L.2
  • 52
    • 65249148484 scopus 로고    scopus 로고
    • QuatIdent: a web server for identifying protein quaternary structural attribute by fusing functional domain and sequential evolution information
    • Shen HB, Chou KC. QuatIdent: a web server for identifying protein quaternary structural attribute by fusing functional domain and sequential evolution information. J ProteomeRes 2009;8(3):1577-84.
    • (2009) J ProteomeRes , vol.8 , Issue.3 , pp. 1577-1584
    • Shen, H.B.1    Chou, K.C.2
  • 53
    • 84885949386 scopus 로고    scopus 로고
    • Improved disorder prediction by combination of orthogonal approaches
    • Schlessinger A, Punta M, Yachdav G, et al. Improved disorder prediction by combination of orthogonal approaches. PLoS One 2009;4:e4433.
    • (2009) PLoS One , vol.4
    • Schlessinger, A.1    Punta, M.2    Yachdav, G.3
  • 54
    • 77956502766 scopus 로고    scopus 로고
    • Improved sequencebased prediction of disordered regions with multilayer fusion of multiple information sources
    • Mizianty M, Stach W, Chen K, et al. Improved sequencebased prediction of disordered regions with multilayer fusion of multiple information sources. Bioinformatics 2010; 26(18):i489-96.
    • (2010) Bioinformatics , vol.26 , Issue.18
    • Mizianty, M.1    Stach, W.2    Chen, K.3
  • 55
    • 76849087968 scopus 로고    scopus 로고
    • PONDR-FIT: a meta-predictor of intrinsically disordered amino acids
    • Xue B, Dunbrack RL, Williams RW, etal. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 2010;1804(4):996-1010.
    • (2010) Biochim Biophys Acta , vol.1804 , Issue.4 , pp. 996-1010
    • Xue, B.1    Dunbrack, R.L.2    Williams, R.W.3
  • 56
    • 47749135262 scopus 로고    scopus 로고
    • PURE: a webserver for the prediction of domains in unassigned regions in proteins
    • Reddy CC, Shameer K, Offmann BO, et al. PURE: a webserver for the prediction of domains in unassigned regions in proteins. BMC Bioinformatics 2008;9:281.
    • (2008) BMC Bioinformatics , vol.9 , pp. 281
    • Reddy, C.C.1    Shameer, K.2    Offmann, B.O.3
  • 57
    • 46149100783 scopus 로고    scopus 로고
    • Protein contact order prediction from primary sequences
    • Shi Y, Zhou J, Arndt D, et al. Protein contact order prediction from primary sequences. BMC Bioinformatics 2008;9: 255.
    • (2008) BMC Bioinformatics , vol.9 , pp. 255
    • Shi, Y.1    Zhou, J.2    Arndt, D.3
  • 58
    • 26444473604 scopus 로고    scopus 로고
    • Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure
    • Garg A, Kaur H, Raghava GP. Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure. Proteins 2005;61(2): 318-24.
    • (2005) Proteins , vol.61 , Issue.2 , pp. 318-324
    • Garg, A.1    Kaur, H.2    Raghava, G.P.3
  • 59
    • 70349392341 scopus 로고    scopus 로고
    • Prodepth: predict residue depth by support vector regression approach from protein sequences only
    • Song J, Tan H, Mahmood K, etal. Prodepth: predict residue depth by support vector regression approach from protein sequences only. PLoS One 2009;4(9):e7072.
    • (2009) PLoS One , vol.4 , Issue.9
    • Song, J.1    Tan, H.2    Mahmood, K.3
  • 60
    • 54049091165 scopus 로고    scopus 로고
    • Sequence based residue depth prediction using evolutionary information and predicted secondary structure
    • Zhang H, Zhang T, Chen K, et al. Sequence based residue depth prediction using evolutionary information and predicted secondary structure. BMC Bioinformatics 2008;9:388.
    • (2008) BMC Bioinformatics , vol.9 , pp. 388
    • Zhang, H.1    Zhang, T.2    Chen, K.3
  • 61
    • 75949116562 scopus 로고    scopus 로고
    • LIBRUS: combined machine learning and homology information for sequence-based ligand-binding residue prediction
    • Kauffman C, Karypis G. LIBRUS: combined machine learning and homology information for sequence-based ligand-binding residue prediction. Bioinformatics 2009; 25(23):3099-107.
    • (2009) Bioinformatics , vol.25 , Issue.23 , pp. 3099-3107
    • Kauffman, C.1    Karypis, G.2
  • 62
    • 68049143439 scopus 로고    scopus 로고
    • On the relation between residue flexibility and local solvent accessibility in proteins
    • Zhang H, Zhang T, Chen K, et al. On the relation between residue flexibility and local solvent accessibility in proteins. Proteins 2009;76(3):617-36.
    • (2009) Proteins , vol.76 , Issue.3 , pp. 617-636
    • Zhang, H.1    Zhang, T.2    Chen, K.3
  • 63
    • 33645288849 scopus 로고    scopus 로고
    • PROFbval: predict flexible and rigid residues in proteins
    • Schlessinger A, Yachdav G, Rost B. PROFbval: predict flexible and rigid residues in proteins. Bioinformatics 2006; 22(7):891-3.
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 891-893
    • Schlessinger, A.1    Yachdav, G.2    Rost, B.3
  • 64
    • 68749093787 scopus 로고    scopus 로고
    • Predicting intrinsic disorder in proteins: an overview
    • He B, Wang K, Liu Y, et al. Predicting intrinsic disorder in proteins: an overview. Cell Res 2009;19(8):929-49.
    • (2009) Cell Res , vol.19 , Issue.8 , pp. 929-949
    • He, B.1    Wang, K.2    Liu, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.