-
2
-
-
0034293832
-
Evolving multilayer perceptrons
-
Castillo, P. A., Carpio, J., Merelo, J. J., Prieto, A. and Rivas, V., 2000, Evolving multilayer perceptrons, Neural Processing Letters, 12(2), 115-127.
-
(2000)
Neural Processing Letters
, vol.12
, Issue.2
, pp. 115-127
-
-
Castillo, P.A.1
Carpio, J.2
Merelo, J.J.3
Prieto, A.4
Rivas, V.5
-
3
-
-
29244436135
-
A particle swarm optimized fuzzyneural network for voice controlled robot systems
-
Chatterjee, A., Pulasinghe, K., Watanabe, K. and Izumi, K., 2005, A particle swarm optimized fuzzyneural network for voice controlled robot systems, IEEE Transactions on Industrial Electronics, 52(6), 1478-489.
-
(2005)
IEEE Transactions On Industrial Electronics
, vol.52
, Issue.6
, pp. 1478-1489
-
-
Chatterjee, A.1
Pulasinghe, K.2
Watanabe, K.3
Izumi, K.4
-
4
-
-
34147105043
-
Application of a PSO-based neural network in analysis of outcomes of construction claims
-
Chau, K. W., 2007, Application of a PSO-based neural network in analysis of outcomes of construction claims, Automation in Construction, 16, 642-646.
-
(2007)
Automation In Construction
, vol.16
, pp. 642-646
-
-
Chau, K.W.1
-
5
-
-
12144252495
-
An improved PSO-based ANN with simulated annealing technique
-
Da, Y. and Ge, X. R., 2005, An improved PSO-based ANN with simulated annealing technique, Neurocomputing Letters, 63(2), 527-533.
-
(2005)
Neurocomputing Letters
, vol.63
, Issue.2
, pp. 527-533
-
-
Da, Y.1
Ge, X.R.2
-
6
-
-
70449408976
-
Design of artificial neural networks using a modified particle swarm optimization algorithm
-
Atlanta, GA, USA
-
Garro, B. A., Sossa, H. and Vazquez, R. A., 2009, Design of artificial neural networks using a modified particle swarm optimization algorithm, Proceedings of IEEE International Joint Conference on Neural Networks (IJCNN'09), Atlanta, GA, USA, 938-945.
-
(2009)
Proceedings of IEEE International Joint Conference On Neural Networks (IJCNN'09)
, pp. 938-945
-
-
Garro, B.A.1
Sossa, H.2
Vazquez, R.A.3
-
7
-
-
80052172200
-
Back-propagation vs particle swarm optimization algorithm: Which algorithm is better to adjust the synaptic weights of a feed-forward ANN?
-
ICSI, Beijing, China
-
Garro, B. A., Sossa H. and Vazquez, R. A., 2010, Back-propagation vs particle swarm optimization algorithm: which algorithm is better to adjust the synaptic weights of a feed-forward ANN? Presented at the International Conference on Swarm Intelligence (ICSI 2010), Beijing, China.
-
(2010)
Presented At the International Conference On Swarm Intelligence
-
-
Garro, B.A.1
Sossa, H.2
Vazquez, R.A.3
-
8
-
-
84942134374
-
Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks
-
Indianapolis, IN, USA
-
Gudise, V. G. and Venayagamoorthy, G. K., 2003, Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks, Proceedings of IEEE Swarm Intelligence Symposium (SIS'03), Indianapolis, IN, USA, 110-117.
-
(2003)
Proceedings of IEEE Swarm Intelligence Symposium (SIS'03)
, pp. 110-117
-
-
Gudise, V.G.1
Venayagamoorthy, G.K.2
-
9
-
-
84937655864
-
Visual pattern recognition by moment invariants
-
Hu, M. K., 1962, Visual pattern recognition by moment invariants, IRE Transactions on Information Theory, 8(2), 179-187.
-
(1962)
IRE Transactions On Information Theory
, vol.8
, Issue.2
, pp. 179-187
-
-
Hu, M.K.1
-
10
-
-
0003792917
-
Machine vision
-
McGraw-Hill
-
Jain, R. et al., 1995, Machine Vision, McGraw-Hill.
-
(1995)
-
-
Jain, R.1
-
11
-
-
0004222346
-
Swarm intelligence
-
Morgan Kaufmann Publishers
-
Kennedy, J., Eberhart, R. C. And Shi, Y., 2001, Swarm Intelligence, Morgan Kaufmann Publishers.
-
(2001)
-
-
Kennedy, J.1
Eberhart, R.C.2
Shi, Y.3
-
12
-
-
33745780306
-
A comparison of PSO and backpropagation for training RBF neural networks for identification of a power system with STATCOM
-
Pasadena, CA, USA
-
Mohaghegi, S., del Valle, Y., Venayagamoorthy, G. K. and Harley, R.G., 2005, A comparison of PSO and backpropagation for training RBF neural networks for identification of a power system with STATCOM, Proceedings IEEE Swarm Intelligence Symposium (SIS 2005), Pasadena, CA, USA, 381-384.
-
(2005)
Proceedings IEEE Swarm Intelligence Symposium (SIS 2005)
, pp. 381-384
-
-
Mohaghegi, S.1
del Valle, Y.2
Venayagamoorthy, G.K.3
Harley, R.G.4
-
13
-
-
0003408496
-
-
Dept. Inf. Comput. Sci., Univ. California, Irvine, CA, USA
-
Murphy, P. M. and D. Aha, W., 1994, UCI repository of machine learning databases, Dept. Inf. Comput. Sci., Univ. California, Irvine, CA, USA.
-
(1994)
UCI Repository of Machine Learning Databases
-
-
Murphy, P.M.1
Aha, D.W.2
-
14
-
-
0018306059
-
A threshold selection method from gray-level histograms, IEEE Transactions on Systems
-
Otsu, N., 1979, A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.
-
(1979)
Man, and Cybernetics
, vol.9
, Issue.1
, pp. 62-66
-
-
Otsu, N.1
-
15
-
-
38049057122
-
Automatic design of ANN by means of GP for data mining tasks: Iris flower classification
-
Rivero, D., Rubañal, J., Dorado, J. and Pazos, A., 2007, Automatic design of ANN by means of GP for data mining tasks: iris flower classification, Lecture Notes in Computer Sciences, 4431, 276-285.
-
(2007)
Lecture Notes iN Computer Sciences
, vol.4431
, pp. 276-285
-
-
Rivero, D.1
Rubañal, J.2
Dorado, J.3
Pazos, A.4
-
16
-
-
0000646059
-
Learning internal representations and error propagation
-
Rumelhart, D. E. and McCleland, J. L. (Eds.), (Cambridge, MA: MIT Press)
-
Rumelhart, D. E, Hinton, G. E. and Williams, R. J., 1986, Learning internal representations and error propagation, in Rumelhart, D. E. and McCleland, J. L. (Eds.), Parallel distributed processing: explorations in the microstructure of cognition (Cambridge, MA: MIT Press), 1, 354-362.
-
(1986)
Parallel Distributed Processing: Explorations In the Microstructure of Cognition
, vol.1
, pp. 354-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
17
-
-
63549137283
-
A hybrid artificial neural networks and particle swarm optimization for function approximation, International Journal of Innovative Computing
-
Tejen, S., Jyunwei, J. and Chengchih, H., 2008, A hybrid artificial neural networks and particle swarm optimization for function approximation, International Journal of Innovative Computing, Information and Control, 4(9), 2363-2374.
-
(2008)
Information and Control
, vol.4
, Issue.9
, pp. 2363-2374
-
-
Tejen, S.1
Jyunwei, J.2
Chengchih, H.3
-
18
-
-
77952574918
-
Particle swarm optimization and neural network application for QSAR
-
Santa Fe, NM, USA
-
th Parallel and Distributed Processing Symposium, Santa Fe, NM, USA, 194-194.
-
(2004)
th Parallel and Distributed Processing Symposium
, pp. 194
-
-
Wang, Z.1
Durst, G.L.2
Eberhart, R.C.3
Boyd, D.B.4
Miled, Z.5
-
19
-
-
0025503558
-
Backpropagation through time: What it does and how to do it
-
Werbos, P. J., 1990, Backpropagation through time: What it does and how to do it, Proceedings of IEEE, 78(10), 1550-1560.
-
(1990)
Proceedings of IEEE
, vol.78
, Issue.10
, pp. 1550-1560
-
-
Werbos, P.J.1
-
20
-
-
0035566378
-
A robust evolutionary algorithm for training neural networks
-
Yang, J. M. and Kao, C. Y., 2001, A robust evolutionary algorithm for training neural networks, Neural Computing and Applications, 10(4), 214-230.
-
(2001)
Neural Computing and Applications
, vol.10
, Issue.4
, pp. 214-230
-
-
Yang, J.M.1
Kao, C.Y.2
-
21
-
-
35548944900
-
An improved particle swarm optimization for evolving feedforward artificial neural networks
-
Yu, J., Xiand, L. and Wang, S., 2007, An improved particle swarm optimization for evolving feedforward artificial neural networks, Neural Processing Letters, 26(3), 217-231.
-
(2007)
Neural Processing Letters
, vol.26
, Issue.3
, pp. 217-231
-
-
Yu, J.1
Xiand, L.2
Wang, S.3
-
22
-
-
56349106409
-
PSO-based single multiplicative neuron model for time series prediction
-
Zhao, L. and Yang, Y., 2009, PSO-based single multiplicative neuron model for time series prediction, Expert Systems with Applications, 36(2), 2805-2812.
-
(2009)
Expert Systems With Applications
, vol.36
, Issue.2
, pp. 2805-2812
-
-
Zhao, L.1
Yang, Y.2
|