메뉴 건너뛰기




Volumn 7, Issue 11 A, 2011, Pages 208-218

Back-propagation vs particle swarm optimization algorithm: Which algorithm is better to adjust the synaptic weights of a feed-forward ANN?

Author keywords

Artificial neural networks; Particle swarm intelligence; Pattern recognition

Indexed keywords


EID: 80052161867     PISSN: 09740635     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (18)

References (22)
  • 4
    • 34147105043 scopus 로고    scopus 로고
    • Application of a PSO-based neural network in analysis of outcomes of construction claims
    • Chau, K. W., 2007, Application of a PSO-based neural network in analysis of outcomes of construction claims, Automation in Construction, 16, 642-646.
    • (2007) Automation In Construction , vol.16 , pp. 642-646
    • Chau, K.W.1
  • 5
    • 12144252495 scopus 로고    scopus 로고
    • An improved PSO-based ANN with simulated annealing technique
    • Da, Y. and Ge, X. R., 2005, An improved PSO-based ANN with simulated annealing technique, Neurocomputing Letters, 63(2), 527-533.
    • (2005) Neurocomputing Letters , vol.63 , Issue.2 , pp. 527-533
    • Da, Y.1    Ge, X.R.2
  • 7
    • 80052172200 scopus 로고    scopus 로고
    • Back-propagation vs particle swarm optimization algorithm: Which algorithm is better to adjust the synaptic weights of a feed-forward ANN?
    • ICSI, Beijing, China
    • Garro, B. A., Sossa H. and Vazquez, R. A., 2010, Back-propagation vs particle swarm optimization algorithm: which algorithm is better to adjust the synaptic weights of a feed-forward ANN? Presented at the International Conference on Swarm Intelligence (ICSI 2010), Beijing, China.
    • (2010) Presented At the International Conference On Swarm Intelligence
    • Garro, B.A.1    Sossa, H.2    Vazquez, R.A.3
  • 8
    • 84942134374 scopus 로고    scopus 로고
    • Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks
    • Indianapolis, IN, USA
    • Gudise, V. G. and Venayagamoorthy, G. K., 2003, Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks, Proceedings of IEEE Swarm Intelligence Symposium (SIS'03), Indianapolis, IN, USA, 110-117.
    • (2003) Proceedings of IEEE Swarm Intelligence Symposium (SIS'03) , pp. 110-117
    • Gudise, V.G.1    Venayagamoorthy, G.K.2
  • 9
    • 84937655864 scopus 로고
    • Visual pattern recognition by moment invariants
    • Hu, M. K., 1962, Visual pattern recognition by moment invariants, IRE Transactions on Information Theory, 8(2), 179-187.
    • (1962) IRE Transactions On Information Theory , vol.8 , Issue.2 , pp. 179-187
    • Hu, M.K.1
  • 10
    • 0003792917 scopus 로고
    • Machine vision
    • McGraw-Hill
    • Jain, R. et al., 1995, Machine Vision, McGraw-Hill.
    • (1995)
    • Jain, R.1
  • 11
    • 0004222346 scopus 로고    scopus 로고
    • Swarm intelligence
    • Morgan Kaufmann Publishers
    • Kennedy, J., Eberhart, R. C. And Shi, Y., 2001, Swarm Intelligence, Morgan Kaufmann Publishers.
    • (2001)
    • Kennedy, J.1    Eberhart, R.C.2    Shi, Y.3
  • 12
    • 33745780306 scopus 로고    scopus 로고
    • A comparison of PSO and backpropagation for training RBF neural networks for identification of a power system with STATCOM
    • Pasadena, CA, USA
    • Mohaghegi, S., del Valle, Y., Venayagamoorthy, G. K. and Harley, R.G., 2005, A comparison of PSO and backpropagation for training RBF neural networks for identification of a power system with STATCOM, Proceedings IEEE Swarm Intelligence Symposium (SIS 2005), Pasadena, CA, USA, 381-384.
    • (2005) Proceedings IEEE Swarm Intelligence Symposium (SIS 2005) , pp. 381-384
    • Mohaghegi, S.1    del Valle, Y.2    Venayagamoorthy, G.K.3    Harley, R.G.4
  • 14
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms, IEEE Transactions on Systems
    • Otsu, N., 1979, A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.
    • (1979) Man, and Cybernetics , vol.9 , Issue.1 , pp. 62-66
    • Otsu, N.1
  • 15
    • 38049057122 scopus 로고    scopus 로고
    • Automatic design of ANN by means of GP for data mining tasks: Iris flower classification
    • Rivero, D., Rubañal, J., Dorado, J. and Pazos, A., 2007, Automatic design of ANN by means of GP for data mining tasks: iris flower classification, Lecture Notes in Computer Sciences, 4431, 276-285.
    • (2007) Lecture Notes iN Computer Sciences , vol.4431 , pp. 276-285
    • Rivero, D.1    Rubañal, J.2    Dorado, J.3    Pazos, A.4
  • 17
    • 63549137283 scopus 로고    scopus 로고
    • A hybrid artificial neural networks and particle swarm optimization for function approximation, International Journal of Innovative Computing
    • Tejen, S., Jyunwei, J. and Chengchih, H., 2008, A hybrid artificial neural networks and particle swarm optimization for function approximation, International Journal of Innovative Computing, Information and Control, 4(9), 2363-2374.
    • (2008) Information and Control , vol.4 , Issue.9 , pp. 2363-2374
    • Tejen, S.1    Jyunwei, J.2    Chengchih, H.3
  • 19
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Werbos, P. J., 1990, Backpropagation through time: What it does and how to do it, Proceedings of IEEE, 78(10), 1550-1560.
    • (1990) Proceedings of IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 20
    • 0035566378 scopus 로고    scopus 로고
    • A robust evolutionary algorithm for training neural networks
    • Yang, J. M. and Kao, C. Y., 2001, A robust evolutionary algorithm for training neural networks, Neural Computing and Applications, 10(4), 214-230.
    • (2001) Neural Computing and Applications , vol.10 , Issue.4 , pp. 214-230
    • Yang, J.M.1    Kao, C.Y.2
  • 21
    • 35548944900 scopus 로고    scopus 로고
    • An improved particle swarm optimization for evolving feedforward artificial neural networks
    • Yu, J., Xiand, L. and Wang, S., 2007, An improved particle swarm optimization for evolving feedforward artificial neural networks, Neural Processing Letters, 26(3), 217-231.
    • (2007) Neural Processing Letters , vol.26 , Issue.3 , pp. 217-231
    • Yu, J.1    Xiand, L.2    Wang, S.3
  • 22
    • 56349106409 scopus 로고    scopus 로고
    • PSO-based single multiplicative neuron model for time series prediction
    • Zhao, L. and Yang, Y., 2009, PSO-based single multiplicative neuron model for time series prediction, Expert Systems with Applications, 36(2), 2805-2812.
    • (2009) Expert Systems With Applications , vol.36 , Issue.2 , pp. 2805-2812
    • Zhao, L.1    Yang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.