메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 832-835

A variable selection method based on KPCA and FNN for nonlinear system modeling

Author keywords

FNN; KPCA; Modeling; Nonlinear systems; Variabl eselection

Indexed keywords

FALSE NEAREST NEIGHBOR; FNN; HYDROGEN CYANIDE; KERNEL PRINCIPAL COMPONENT; KPCA; LINEARLY SEPARABLE; MULTICOLLINEARITY; NONLINEAR SYSTEM MODELING; NONLINEAR VARIABLES; NOVEL METHODS; PARAMETRIC MODELS; SECONDARY VARIABLES; VARIABL ESELECTION; VARIABLE SELECTION METHODS;

EID: 80052159037     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICBMEI.2011.5917065     Document Type: Conference Paper
Times cited : (1)

References (11)
  • 1
    • 77950666260 scopus 로고    scopus 로고
    • Smart soft- sensing for the feedwater flowrate at pwrs using a gmdh algorithm
    • DONG HYUK LIM, SUNG HAN LEE, MAN GYUN NA. Smart Soft- Sensing for the Feedwater Flowrate at PWRs Using a GMDH Algorithm. IEEE Transactions on Nuclear Science 2010. 57:1, pp 340-347
    • (2010) IEEE Transactions on Nuclear Science , vol.57 , Issue.1 , pp. 340-347
    • Lim, D.H.1    Lee, S.H.2    Na, M.G.3
  • 2
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • J. M. Lee, C. K. Yoo, S. W. Choi, Nonlinear Process Monitoring Using Kernel Principal Component Analysis. Chemical Engineering Science, 2004, 59: pp 223-234.
    • (2004) Chemical Engineering Science , vol.59 , pp. 223-234
    • Lee, J.M.1    Yoo, C.K.2    Choi, S.W.3
  • 3
    • 33750481498 scopus 로고    scopus 로고
    • Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors
    • Achmad Widodo, Bo-Suk Yang, Tian Han. Combination of Independent Component Analysis and Support Vector Machines for Intelligent Faults Diagnosis of Induction Motors. Expert Systems with Applications, 2007, 32: pp 299-312.
    • (2007) Expert Systems with Applications , vol.32 , pp. 299-312
    • Widodo, A.1    Yang, B.2    Han, T.3
  • 4
    • 33845623677 scopus 로고    scopus 로고
    • Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors
    • Achmad Widodo, Bo-Suk Yang.Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors. Expert Systems with Applications, 2007, 33: pp 241-250
    • (2007) Expert Systems with Applications , vol.33 , pp. 241-250
    • Widodo, A.1    Yang, B.2
  • 5
    • 58749101018 scopus 로고    scopus 로고
    • Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine
    • Achmad Widodo, Eric Y. Kim, Jong-Duk Son, et al.Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine. Expert Systems with Applications, 2009, 36: pp 7252-7261
    • (2009) Expert Systems with Applications , vol.36 , pp. 7252-7261
    • Widodo, A.1    Kim, E.Y.2    Son, J.-D.3
  • 6
    • 50249126641 scopus 로고    scopus 로고
    • Kernel scatter-difference-based discriminant analysis for nonlinear fault diagnosis
    • Junhong Li, Peiling Cui.Kernel scatter-difference-based discriminant analysis for nonlinear fault diagnosis. Chemometrics and Intelligent Laboratory Systems, 2008, 94: pp 80-86
    • (2008) Chemometrics and Intelligent Laboratory Systems , vol.94 , pp. 80-86
    • Li, J.1    Cui, P.2
  • 7
    • 33750429920 scopus 로고    scopus 로고
    • Nonlinear feature extraction and classification of multivariate process data in kernel feature space
    • Hyun-Woo Cho. Nonlinear feature extraction and classification of multivariate process data in kernel feature space. Expert Systems with Applications, 2007, 32: pp 534-542
    • (2007) Expert Systems with Applications , vol.32 , pp. 534-542
    • Cho, H.-W.1
  • 8
    • 56949099324 scopus 로고    scopus 로고
    • Performance assessment of a novel fault diagnosis system based on support vector machines
    • Ignacio Yélamos, Gerard Escudero, Moisès Graells, Luis Puigjaner.Performance assessment of a novel fault diagnosis system based on support vector machines. Computers and Chemical Engineering, 2009, 33: pp 244-255
    • (2009) Computers and Chemical Engineering , vol.33 , pp. 244-255
    • Yélamos, I.1    Escudero, G.2    Graells, M.3    Puigjaner, L.4
  • 9
    • 0242288799 scopus 로고    scopus 로고
    • A comparision of pca, kpca and ica for dimensionality reduction in support vector machine
    • L. J. Cao, K S. Chua, W. K Chong, H. P. Lee, Q. M. Gu. A Comparision of PCA, KPCA and ICA for Dimensionality Reduction in Support Vector Machine. Neurocomputing, 2003, 55: pp 321-336.
    • (2003) Neurocomputing , vol.55 , pp. 321-336
    • Cao, L.J.1    Chua, K.S.2    Chong, W.K.3    Lee, H.P.4    Gu, Q.M.5
  • 10
    • 33845973353 scopus 로고    scopus 로고
    • A method for speeding u pfenture extraction based on kpca
    • Yong Xu, David Zhang, Feng-Xi Song, et al.A method for Speeding u PFenture Extraction based on KPCA. Neurocomputing, 2007:1056-1061.
    • (2007) Neurocomputing , pp. 1056-1061
    • Xu, Y.1    Zhang, D.2    Song, F.3
  • 11
    • 1542263107 scopus 로고    scopus 로고
    • Choice of the parameters for the phase space reconstruction of chaotic time series
    • Wang Haiyan 1 Sheng Zhaohan.Choice of the Parameters for the Phase Space Reconstruction of Chaotic Time Series. Journal of Southeast Univwrsity(Natural Science Edition), 2000, 30(.5) : pp 113-117.
    • (2000) Journal of Southeast Univwrsity(Natural Science Edition) , vol.30 , Issue.5 , pp. 113-117
    • Haiyan, W.1    Zhaohan, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.