메뉴 건너뛰기




Volumn , Issue , 2010, Pages 69-92

Ensemble Kalman Filter: Current status and potential

Author keywords

[No Author keywords available]

Indexed keywords


EID: 80052055275     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-3-540-74703-1_4     Document Type: Chapter
Times cited : (20)

References (79)
  • 1
    • 0035655814 scopus 로고    scopus 로고
    • An ensemble adjustment Kalman filter for data assimilation
    • Anderson, J. L., 2001. An ensemble adjustment Kalman filter for data assimilation. Mon. Weather Rev., 129, 2884-2903.
    • (2001) Mon. Weather Rev. , vol.129 , pp. 2884-2903
    • Anderson, J.L.1
  • 3
    • 33645575318 scopus 로고    scopus 로고
    • Local ensemble Kalman filtering in the presence of model bias
    • Baek, S.-J., B. R. Hunt, E. Kalnay, E. Ott and I. Szunyogh, 2006. Local ensemble Kalman filtering in the presence of model bias. Tellus A, 58, 293-306.
    • (2006) Tellus A , vol.58 , pp. 293-306
    • Baek, S.-J.1    Hunt, B.R.2    Kalnay, E.3    Ott, E.4    Szunyogh, I.5
  • 5
    • 0035270690 scopus 로고    scopus 로고
    • Adaptive sampling with ensemble transform Kalman filter. Part I: Theoretical aspects
    • Bishop, C. H., B. J. Etherton and S. J. Majumdar, 2001. Adaptive sampling with ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Weather Rev., 129, 420-436.
    • (2001) Mon. Weather Rev. , vol.129 , pp. 420-436
    • Bishop, C.H.1    Etherton, B.J.2    Majumdar, S.J.3
  • 7
    • 0032439201 scopus 로고    scopus 로고
    • On the analysis scheme in the ensemble Kalman filter
    • Burgers, G., P. J. van Leeuwen and G. Evensen, 1998. On the analysis scheme in the ensemble Kalman filter. Mon. Weather Rev., 126, 1719-1724.
    • (1998) Mon. Weather Rev. , vol.126 , pp. 1719-1724
    • Burgers, G.1    Van Leeuwen, P.J.2    Evensen, G.3
  • 8
    • 10944246474 scopus 로고    scopus 로고
    • Influence-matrix diagnostic of a data assimilation system
    • Cardinali, C., S. Pezzulli and E. Andersson, 2004. Influence-matrix diagnostic of a data assimilation system. Q. J. R. Meteorol. Soc., 130, 2767-2786.
    • (2004) Q. J. R. Meteorol. Soc. , vol.130 , pp. 2767-2786
    • Cardinali, C.1    Pezzulli, S.2    Andersson, E.3
  • 9
    • 24144470136 scopus 로고    scopus 로고
    • A comparison between the 4D-VAR and the ensemble Kalman filter techniques for radar data assimilation
    • Caya, A., J. Sun and C. Snyder, 2005. A comparison between the 4D-VAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Weather Rev., 133, 3081-3094.
    • (2005) Mon. Weather Rev. , vol.133 , pp. 3081-3094
    • Caya, A.1    Sun, J.2    Snyder, C.3
  • 10
    • 0025691334 scopus 로고
    • Variational assimilation of meteorological observations with the direct and adjoint shallow water equations
    • Courtier, P. and O. Talagrand, 1990. Variational assimilation of meteorological observations with the direct and adjoint shallow water equations. Tellus, 42 A, 531-549.
    • (1990) Tellus , vol.42 A , pp. 531-549
    • Courtier, P.1    Talagrand, O.2
  • 11
    • 45849096498 scopus 로고    scopus 로고
    • Using singular value decomposition to parameterize state dependent model errors
    • Danforth, C. M. and E. Kalnay, 2008. Using singular value decomposition to parameterize state dependent model errors. J. Atmos. Sci., 65, 1467-1478.
    • (2008) J. Atmos. Sci. , vol.65 , pp. 1467-1478
    • Danforth, C.M.1    Kalnay, E.2
  • 12
    • 33847379878 scopus 로고    scopus 로고
    • Estimating and correcting global weather model error
    • Danforth, C. M., E. Kalnay and T. Miyoshi, 2006. Estimating and correcting global weather model error. Mon. Weather Rev., 134, 281-299.
    • (2006) Mon. Weather Rev. , vol.134 , pp. 281-299
    • Danforth, C.M.1    Kalnay, E.2    Miyoshi, T.3
  • 13
    • 0000674568 scopus 로고    scopus 로고
    • Data assimilation in the presence of forecast bias
    • Dee, D. P. and A. M. da Silva, 1998. Data assimilation in the presence of forecast bias. Q. J. R. Meteorol. Soc., 124, 269-295.
    • (1998) Q. J. R. Meteorol. Soc. , vol.124 , pp. 269-295
    • Dee, D.P.1    Da Silva, A.M.2
  • 14
    • 69749084907 scopus 로고    scopus 로고
    • Diagnosis of observation, background and analysis-error statistics in observation space
    • Desroziers, G., L. Berre, B. Chapnik and P. Poli, 2005. Diagnosis of observation, background and analysis-error statistics in observation space. Q. J. R. Meteorol. Soc., 131, 3385-3396.
    • (2005) Q. J. R. Meteorol. Soc. , vol.131 , pp. 3385-3396
    • Desroziers, G.1    Berre, L.2    Chapnik, B.3    Poli, P.4
  • 15
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10, 143-10, 162.
    • (1994) J. Geophys. Res. , vol.99 , pp. 10143-10162
    • Evensen, G.1
  • 16
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: Theoretical formulation and practical implementation
    • Evensen, G., 2003. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean Dyn., 53, 343-367.
    • (2003) Ocean Dyn. , vol.53 , pp. 343-367
    • Evensen, G.1
  • 17
    • 0002162819 scopus 로고    scopus 로고
    • Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with a quasi-geostrophic model
    • Evensen, G. and P. J. van Leeuwen, 1996. Assimilation of Geosat altimeter data for the Agulhas current using the ensemble Kalman filter with a quasi-geostrophic model. Mon. Weather Rev., 124, 85-96.
    • (1996) Mon. Weather Rev. , vol.124 , pp. 85-96
    • Evensen, G.1    Van Leeuwen, P.J.2
  • 18
    • 33846861503 scopus 로고    scopus 로고
    • On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation
    • Fisher, M., M. Leutbecher and G. Kelly, 2005. On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation. Q. J. R. Meteorol. Soc., 131, 3235-3246.
    • (2005) Q. J. R. Meteorol. Soc. , vol.131 , pp. 3235-3246
    • Fisher, M.1    Leutbecher, M.2    Kelly, G.3
  • 19
    • 0033023511 scopus 로고    scopus 로고
    • Construction of correlation functions in two and three dimensions
    • Gaspari, G. and S. E. Cohn, 1999. Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc., 125, 723-757.
    • (1999) Q. J. R. Meteorol. Soc. , vol.125 , pp. 723-757
    • Gaspari, G.1    Cohn, S.E.2
  • 20
    • 33645807073 scopus 로고
    • Data assimilation in meteorology and oceanography
    • Ghil, M. and P. Malanotte-Rizzoli, 1991. Data assimilation in meteorology and oceanography. Adv. Geophys., 33, 141-266.
    • (1991) Adv. Geophys. , vol.33 , pp. 141-266
    • Ghil, M.1    Malanotte-Rizzoli, P.2
  • 21
    • 84895253272 scopus 로고    scopus 로고
    • EnKF localization techniques and balance
    • Melbourne, Australia, 6-9 October 2009, submitted to Mon. Weather Rev.
    • Greybush, S., E. Kalnay, T. Miyoshi, K. Ide and B. Hunt, 2009. EnKF localization techniques and balance. Presented at the WMO 5th International Symposium on Data Assimilation. Melbourne, Australia, 6-9 October 2009, submitted to Mon. Weather Rev., Available at http://www.weatherchaos.umd.edu/ papers/Greybush-Melbourne2009.ppt.
    • (2009) The WMO 5th International Symposium on Data Assimilation
    • Greybush, S.1    Kalnay, E.2    Miyoshi, T.3    Ide, K.4    Hunt, B.5
  • 22
    • 34548750952 scopus 로고    scopus 로고
    • Response to the discussion on "4-D-Var or EnKF?"
    • Gustafsson, N., 2007. Response to the discussion on "4-D-Var or EnKF?". Tellus A, 59, 778-780.
    • (2007) Tellus A , vol.59 , pp. 778-780
    • Gustafsson, N.1
  • 23
    • 0035506430 scopus 로고    scopus 로고
    • Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter
    • Hamill, T. M., J. S. Whitaker and C. Snyder, 2001. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Weather Rev., 129, 2776-2790.
    • (2001) Mon. Weather Rev. , vol.129 , pp. 2776-2790
    • Hamill, T.M.1    Whitaker, J.S.2    Snyder, C.3
  • 24
    • 34247587126 scopus 로고    scopus 로고
    • A non-Gaussian ensemble filter for assimilating infrequent noisy observations
    • Harlim, J. and B. R. Hunt, 2007a. A non-Gaussian ensemble filter for assimilating infrequent noisy observations. Tellus A, 59, 225-237.
    • (2007) Tellus A , vol.59 , pp. 225-237
    • Harlim, J.1    Hunt, B.R.2
  • 25
    • 34548704863 scopus 로고    scopus 로고
    • Four-dimensional local ensemble transform Kalman filter: Variational formulation and numerical experiments with a global circulation model
    • Harlim, J. and B. R. Hunt, 2007b. Four-dimensional local ensemble transform Kalman filter: Variational formulation and numerical experiments with a global circulation model. Tellus A, 59, 731-748.
    • (2007) Tellus A , vol.59 , pp. 731-748
    • Harlim, J.1    Hunt, B.R.2
  • 26
    • 0032024819 scopus 로고    scopus 로고
    • Data assimilation using an ensemble Kalman filter technique
    • Houtekamer, P. L. and H. L. Mitchell, 1998. Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev., 126, 796-811.
    • (1998) Mon. Weather Rev. , vol.126 , pp. 796-811
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 27
    • 0035129828 scopus 로고    scopus 로고
    • A sequential ensemble Kalman filter for atmospheric data assimilation
    • Houtekamer, P. L. and H. L. Mitchell, 2001. A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev., 129, 123-137.
    • (2001) Mon. Weather Rev. , vol.129 , pp. 123-137
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 29
    • 84895280677 scopus 로고    scopus 로고
    • An efficient implementation of the local ensemble Kalman filter
    • Hunt, B. R., 2005. An efficient implementation of the local ensemble Kalman filter. Available at http://arxiv.org./abs/physics/0511236.
    • (2005) Available at
    • Hunt, B.R.1
  • 30
    • 3843055922 scopus 로고    scopus 로고
    • Four-dimensional ensemble Kalman filtering
    • Hunt, B. R., E. Kalnay, E. J. Kostelich, et al., 2004. Four-dimensional ensemble Kalman filtering. Tellus, 56 A, 273-277.
    • (2004) Tellus , vol.56 A , pp. 273-277
    • Hunt, B.R.1    Kalnay, E.2    Kostelich, E.J.3
  • 31
    • 34248675795 scopus 로고    scopus 로고
    • Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter
    • Hunt, B. R., E. J. Kostelich and I. Szunyogh, 2007. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112-126.
    • (2007) Physica D , vol.230 , pp. 112-126
    • Hunt, B.R.1    Kostelich, E.J.2    Szunyogh, I.3
  • 32
    • 22444452396 scopus 로고    scopus 로고
    • Unified notation for data assimilation: Operational, sequential and variational
    • Ide, K., P. Courtier, M. Ghil and A. Lorenc, 1997. Unified notation for data assimilation: Operational, sequential and variational. J. Meteorol. Soc. Jpn., 75, 181-189.
    • (1997) J. Meteorol. Soc. Jpn. , vol.75 , pp. 181-189
    • Ide, K.1    Courtier, P.2    Ghil, M.3    Lorenc, A.4
  • 33
    • 0345581435 scopus 로고    scopus 로고
    • Variational assimilation of time sequences of surface observations with serially correlated errors
    • Järvinen, H., E. Andersson and F. Bouttier, 1999. Variational assimilation of time sequences of surface observations with serially correlated errors. Tellus, 51 A, 469-488.
    • (1999) Tellus , vol.51 A , pp. 469-488
    • Järvinen, H.1    Andersson, E.2    Bouttier, F.3
  • 35
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman, R. E., 1960. A new approach to linear filtering and prediction problems. J. Basic Eng., 82, 35-45.
    • (1960) J. Basic Eng. , vol.82 , pp. 35-45
    • Kalman, R.E.1
  • 38
    • 34548750952 scopus 로고    scopus 로고
    • Response to the discussion on "4D-Var or EnKF?" by Nils Gustaffson
    • Kalnay, E., H. Li, T. Miyoshi, S.-C. Yang and J. Ballabrera-Poy, 2007b. Response to the discussion on "4D-Var or EnKF?" by Nils Gustaffson. Tellus A, 59, 778-780.
    • (2007) Tellus A , vol.59 , pp. 778-780
    • Kalnay, E.1    Li, H.2    Miyoshi, T.3    Yang, S.-C.4    Ballabrera-Poy, J.5
  • 40
    • 0033912092 scopus 로고    scopus 로고
    • Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter
    • Keppenne, C. L., 2000. Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter. Mon. Weather Rev., 128, 1971-1981.
    • (2000) Mon. Weather Rev. , vol.128 , pp. 1971-1981
    • Keppenne, C.L.1
  • 41
    • 0036965503 scopus 로고    scopus 로고
    • Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model
    • Keppenne, C. and H. Rienecker, 2002. Initial testing of a massively parallel ensemble Kalman filter with the Poseidon isopycnal ocean general circulation model. Mon. Weather Rev., 130, 2951-2965.
    • (2002) Mon. Weather Rev. , vol.130 , pp. 2951-2965
    • Keppenne, C.1    Rienecker, H.2
  • 42
    • 2042467553 scopus 로고    scopus 로고
    • Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system
    • Langland, R. H. and N. L. Baker, 2004. Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56 A, 189-201.
    • (2004) Tellus , vol.56 A , pp. 189-201
    • Langland, R.H.1    Baker, N.L.2
  • 44
    • 66849124453 scopus 로고    scopus 로고
    • Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter
    • Li, H., E. Kalnay and T. Miyoshi, 2009a. Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter. Q. J. R. Meteorol. Soc., 135, 523-533.
    • (2009) Q. J. R. Meteorol. Soc. , vol.135 , pp. 523-533
    • Li, H.1    Kalnay, E.2    Miyoshi, T.3
  • 45
    • 70449106810 scopus 로고    scopus 로고
    • Accounting for model errors in ensemble data assimilation
    • Li, H., E. Kalnay, T. Miyoshi and C. M. Danforth, 2009b. Accounting for model errors in ensemble data assimilation. Mon. Weather Rev., 137, 3407-3419.
    • (2009) Mon. Weather Rev. , vol.137 , pp. 3407-3419
    • Li, H.1    Kalnay, E.2    Miyoshi, T.3    Danforth, C.M.4
  • 46
    • 50949109536 scopus 로고    scopus 로고
    • Estimating observation impact without adjoint model in an ensemble Kalman filter
    • Liu, J. and E. Kalnay, 2008. Estimating observation impact without adjoint model in an ensemble Kalman filter. Q. J. R. Meteorol. Soc., 134, 1327-1335.
    • (2008) Q. J. R. Meteorol. Soc. , vol.134 , pp. 1327-1335
    • Liu, J.1    Kalnay, E.2
  • 47
    • 70350675099 scopus 로고    scopus 로고
    • Analysis sensitivity calculation in an ensemble Kalman filter
    • Liu, J., E. Kalnay, T. Miyoshi and C. Cardinali, 2009. Analysis sensitivity calculation in an ensemble Kalman filter. Q. J. R. Meteorol. Soc., 135, 523-533.
    • (2009) Q. J. R. Meteorol. Soc. , vol.135 , pp. 523-533
    • Liu, J.1    Kalnay, E.2    Miyoshi, T.3    Cardinali, C.4
  • 48
    • 84975888044 scopus 로고
    • Analysis methods for numerical weather prediction
    • Lorenc, A. C., 1986. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc., 112, 1177-1194.
    • (1986) Q. J. R. Meteorol. Soc. , vol.112 , pp. 1177-1194
    • Lorenc, A.C.1
  • 49
    • 0347709927 scopus 로고    scopus 로고
    • The potential of the ensemble Kalman filter for NWP - A comparison with 4D-Var
    • Lorenc, A. C., 2003. The potential of the ensemble Kalman filter for NWP - a comparison with 4D-Var. Q. J. R. Meteorol. Soc., 129, 3183-3203.
    • (2003) Q. J. R. Meteorol. Soc. , vol.129 , pp. 3183-3203
    • Lorenc, A.C.1
  • 50
    • 0000241853 scopus 로고
    • Deterministic non-periodic flow
    • Lorenz, E., 1963. Deterministic non-periodic flow. J. Atmos. Sci., 20, 130-141.
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.1
  • 51
    • 0036853557 scopus 로고    scopus 로고
    • Ensemble size, balance, and model-error representation in an ensemble Kalman filter
    • Mitchell, H. L., P. L. Houtekamer and G. Pellerin, 2002. Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Weather Rev., 130, 2791-2808.
    • (2002) Mon. Weather Rev. , vol.130 , pp. 2791-2808
    • Mitchell, H.L.1    Houtekamer, P.L.2    Pellerin, G.3
  • 53
    • 34247110575 scopus 로고    scopus 로고
    • Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution
    • Miyoshi, T. and S. Yamane, 2007. Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution. Mon. Weather Rev., 135, 3841-3861.
    • (2007) Mon. Weather Rev. , vol.135 , pp. 3841-3861
    • Miyoshi, T.1    Yamane, S.2
  • 54
    • 0037273134 scopus 로고    scopus 로고
    • Atmospheric simulations using a GCM with simplified physical parameterizations. I: Model climatology and variability in multi-decadal experiments
    • Molteni, F., 2003. Atmospheric simulations using a GCM with simplified physical parameterizations. I: Model climatology and variability in multi-decadal experiments. Clim. Dyn., 20, 175-191.
    • (2003) Clim. Dyn. , vol.20 , pp. 175-191
    • Molteni, F.1
  • 55
    • 33745313011 scopus 로고    scopus 로고
    • A comparison of error subspace Kalman filters
    • Nerger, L., W. Hiller and J. Scroeter, 2005. A comparison of error subspace Kalman filters. Tellus, 57 A, 715-735.
    • (2005) Tellus , vol.57 A , pp. 715-735
    • Nerger, L.1    Hiller, W.2    Scroeter, J.3
  • 56
    • 7744239866 scopus 로고    scopus 로고
    • Application of lateral boundary condition perturbations to help restore dispersion in limited-area ensemble forecasts
    • Nutter, P., M. Xue and D. Stensrud, 2004. Application of lateral boundary condition perturbations to help restore dispersion in limited-area ensemble forecasts. Mon. Weather Rev., 132, 2378-2390.
    • (2004) Mon. Weather Rev. , vol.132 , pp. 2378-2390
    • Nutter, P.1    Xue, M.2    Stensrud, D.3
  • 58
    • 0035335074 scopus 로고    scopus 로고
    • Stochastic methods for sequential data assimilation in strongly nonlinear systems
    • Pham, D. T., 2001. Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. Weather Rev., 129, 1194-1207.
    • (2001) Mon. Weather Rev. , vol.129 , pp. 1194-1207
    • Pham, D.T.1
  • 59
    • 0029656548 scopus 로고    scopus 로고
    • On extending the limits of variational assimilation in chaotic systems
    • Pires, C., R. Vautard and O. Talagrand, 1996. On extending the limits of variational assimilation in chaotic systems. Tellus, 48 A, 96-121.
    • (1996) Tellus , vol.48 A , pp. 96-121
    • Pires, C.1    Vautard, R.2    Talagrand, O.3
  • 62
    • 43049119984 scopus 로고    scopus 로고
    • An adaptive ensemble Kalman filter for soil moisture data assimilation
    • doi:10.1029/2007WR006357
    • Reichle, R. H., W. T. Crow and C. L. Keppenne, 2008. An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resour. Res., 44, W03423, doi:10.1029/2007WR006357.
    • (2008) Water Resour. Res. , vol.44
    • Reichle, R.H.1    Crow, W.T.2    Keppenne, C.L.3
  • 63
    • 0000769161 scopus 로고    scopus 로고
    • A case study of cyclogenesis using a model hierarchy
    • Rotunno, R. and J. W. Bao, 1996. A case study of cyclogenesis using a model hierarchy. Mon. Weather Rev., 124, 1051-1066.
    • (1996) Mon. Weather Rev. , vol.124 , pp. 1051-1066
    • Rotunno, R.1    Bao, J.W.2
  • 65
    • 0023128058 scopus 로고
    • Variational assimilation of meteorological observations with the adjoint vorticity equation I: Theory
    • Talagrand, O. and P. Courtier, 1987. Variational assimilation of meteorological observations with the adjoint vorticity equation I: theory. Q. J. R. Meteorol. Soc., 113, 1311-1328.
    • (1987) Q. J. R. Meteorol. Soc. , vol.113 , pp. 1311-1328
    • Talagrand, O.1    Courtier, P.2
  • 66
    • 0026401602 scopus 로고
    • Four-dimensional data assimilation using the adjoint of a multilevel primitive equation model
    • Thépaut, J.-N. and P. Courtier, 1991. Four-dimensional data assimilation using the adjoint of a multilevel primitive equation model. Q. J. R. Meteorol. Soc., 117, 1225-1254.
    • (1991) Q. J. R. Meteorol. Soc. , vol.117 , pp. 1225-1254
    • Thépaut, J.-N.1    Courtier, P.2
  • 68
    • 57149141566 scopus 로고    scopus 로고
    • Performance characteristics of a Pseudo-Operational Ensemble Kalman Filter
    • Torn, R. D. and G. J. Hakim, 2008. Performance characteristics of a Pseudo-Operational Ensemble Kalman Filter. Mon. Weather Review, 136, 3947-3963.
    • (2008) Mon. Weather Review , vol.136 , pp. 3947-3963
    • Torn, R.D.1    Hakim, G.J.2
  • 69
    • 33748999011 scopus 로고    scopus 로고
    • Boundary conditions for limited-area ensemble Kalman filters
    • Torn, R. D., G. J. Hakim and C. Snyder, 2006. Boundary conditions for limited-area ensemble Kalman filters. Mon. Weather Rev., 134, 2490-2502.
    • (2006) Mon. Weather Rev. , vol.134 , pp. 2490-2502
    • Torn, R.D.1    Hakim, G.J.2    Snyder, C.3
  • 70
    • 34548215235 scopus 로고    scopus 로고
    • Model-error estimation in 4D-Var
    • Trémolet, Y., 2007. Model-error estimation in 4D-Var. Q. J. R. Meteorol. Soc., 133, 1267-1280.
    • (2007) Q. J. R. Meteorol. Soc. , vol.133 , pp. 1267-1280
    • Trémolet, Y.1
  • 71
    • 3943069649 scopus 로고    scopus 로고
    • Which is better, an ensemble of positivenegative pairs or a centered spherical simplex ensemble?
    • Wang, X., C. H. Bishop and S. J. Julier, 2004. Which is better, an ensemble of positivenegative pairs or a centered spherical simplex ensemble? Mon. Weather Rev., 132, 1590-1605.
    • (2004) Mon. Weather Rev. , vol.132 , pp. 1590-1605
    • Wang, X.1    Bishop, C.H.2    Julier, S.J.3
  • 72
    • 2442668784 scopus 로고    scopus 로고
    • Reanalysis without radiosondes using ensemble data assimilation
    • Whitaker, J. S., G. P. Compo, X. Wei and T. M. Hamill, 2004. Reanalysis without radiosondes using ensemble data assimilation. Mon. Weather Rev., 132, 1190-1200.
    • (2004) Mon. Weather Rev. , vol.132 , pp. 1190-1200
    • Whitaker, J.S.1    Compo, G.P.2    Wei, X.3    Hamill, T.M.4
  • 73
    • 0036646009 scopus 로고    scopus 로고
    • Ensemble data assimilation without perturbed observations
    • Whitaker, J. S. and T. M. Hamill, 2002. Ensemble data assimilation without perturbed observations. Mon. Weather Rev., 130, 1913-1924.
    • (2002) Mon. Weather Rev. , vol.130 , pp. 1913-1924
    • Whitaker, J.S.1    Hamill, T.M.2
  • 74
    • 44449095043 scopus 로고    scopus 로고
    • Ensemble data assimilation with the NCEP global forecast system
    • Whitaker, J. S., T. M. Hamill, X. Wei, Y. Song and Z. Toth, 2008. Ensemble data assimilation with the NCEP global forecast system. Mon. Weather Rev., 136, 463-482.
    • (2008) Mon. Weather Rev. , vol.136 , pp. 463-482
    • Whitaker, J.S.1    Hamill, T.M.2    Wei, X.3    Song, Y.4    Toth, Z.5
  • 75
    • 68249159681 scopus 로고    scopus 로고
    • Comparison of ensemblebased and variational-based data assimilation schemes in a quasi-geostrophic model
    • Yang, S.-C., M. Corazza, A. Carrassi, E. Kalnay and T. Miyoshi, 2009a. Comparison of ensemblebased and variational-based data assimilation schemes in a quasi-geostrophic model. Mon. Weather Rev., 137, 693-709.
    • (2009) Mon. Weather Rev. , vol.137 , pp. 693-709
    • Yang, S.-C.1    Corazza, M.2    Carrassi, A.3    Kalnay, E.4    Miyoshi, T.5
  • 76
    • 67649438818 scopus 로고    scopus 로고
    • Weight interpolation for efficient data assimilation with the local ensemble transform Kalman filter
    • Yang, S.-C., E. Kalnay, B. Hunt and N. Bowler, 2009b. Weight interpolation for efficient data assimilation with the local ensemble transform Kalman filter. Q. J. R. Meteorol. Soc., 135, 251-262.
    • (2009) Q. J. R. Meteorol. Soc. , vol.135 , pp. 251-262
    • Yang, S.-C.1    Kalnay, E.2    Hunt, B.3    Bowler, N.4
  • 77
    • 39549118477 scopus 로고    scopus 로고
    • Observation sensitivity calculations using the adjoint of the gridpoint statistical interpolation (GSI) analysis system
    • Zhu, Y. and R. Gelaro, 2008. Observation sensitivity calculations using the adjoint of the gridpoint statistical interpolation (GSI) analysis system. Mon. Weather Rev., 136, 335-351.
    • (2008) Mon. Weather Rev. , vol.136 , pp. 335-351
    • Zhu, Y.1    Gelaro, R.2
  • 78
    • 24944523803 scopus 로고    scopus 로고
    • Maximum likelihood ensemble filter: Theoretical aspects
    • Zupanski, M., 2005. Maximum likelihood ensemble filter: Theoretical aspects. Mon. Weather Rev., 133, 1710-1726.
    • (2005) Mon. Weather Rev. , vol.133 , pp. 1710-1726
    • Zupanski, M.1
  • 79
    • 33644896246 scopus 로고    scopus 로고
    • Initiation of ensemble data assimilation
    • Zupanski, M., S. J. Fletcher, I. M. Navon, et al., 2006. Initiation of ensemble data assimilation. Tellus, 58 A, 159-170.
    • (2006) Tellus , vol.58 A , pp. 159-170
    • Zupanski, M.1    Fletcher, S.J.2    Navon, I.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.