-
1
-
-
0020961114
-
Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus
-
Moore R.Y. Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Fed. Proc. 1983, 42:2783-2789.
-
(1983)
Fed. Proc.
, vol.42
, pp. 2783-2789
-
-
Moore, R.Y.1
-
2
-
-
0037194790
-
Coordination of circadian timing in mammals
-
Reppert S.M., Weaver D.R. Coordination of circadian timing in mammals. Nature 2002, 418:935-941.
-
(2002)
Nature
, vol.418
, pp. 935-941
-
-
Reppert, S.M.1
Weaver, D.R.2
-
3
-
-
77955923120
-
The adjustment and manipulation of biological rhythms by light, nutrition, and abused drugs
-
Shibata S., Tahara Y., Hirao A. The adjustment and manipulation of biological rhythms by light, nutrition, and abused drugs. Adv. Drug Deliv. Rev. 2010, 62:918-927.
-
(2010)
Adv. Drug Deliv. Rev.
, vol.62
, pp. 918-927
-
-
Shibata, S.1
Tahara, Y.2
Hirao, A.3
-
4
-
-
0034697846
-
Identification of a novel FGF, FGF-21, preferentially expressed in the liver
-
Nishimura T., Nakatake Y., Konishi M., Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim. Biophys. Acta 2000, 1492:203-206.
-
(2000)
Biochim. Biophys. Acta
, vol.1492
, pp. 203-206
-
-
Nishimura, T.1
Nakatake, Y.2
Konishi, M.3
Itoh, N.4
-
5
-
-
34249677947
-
FGF21: a missing link in the biology of fasting
-
Reitman M.L. FGF21: a missing link in the biology of fasting. Cell Metab. 2007, 5:405-407.
-
(2007)
Cell Metab.
, vol.5
, pp. 405-407
-
-
Reitman, M.L.1
-
6
-
-
77955814651
-
Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease
-
Itoh N. Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res. 2010, 342:1-11.
-
(2010)
Cell Tissue Res.
, vol.342
, pp. 1-11
-
-
Itoh, N.1
-
7
-
-
80052033268
-
FGF21 as an endocrine regulator in lipid metabolism: from molecular evolution to physiology and pathophysiology
-
Murata Y., Konishi M., Itoh N. FGF21 as an endocrine regulator in lipid metabolism: from molecular evolution to physiology and pathophysiology. J. Nutr. Metab. 2011, 2011:981315.
-
(2011)
J. Nutr. Metab.
, vol.2011
, pp. 981315
-
-
Murata, Y.1
Konishi, M.2
Itoh, N.3
-
8
-
-
36148970418
-
The fasting polypeptide FGF21 can enter brain from blood
-
Hsuchou H., Pan W., Kastin A.J. The fasting polypeptide FGF21 can enter brain from blood. Peptides 2007, 28:2382-2386.
-
(2007)
Peptides
, vol.28
, pp. 2382-2386
-
-
Hsuchou, H.1
Pan, W.2
Kastin, A.J.3
-
9
-
-
34249697012
-
BetaKlotho is required for metabolic activity of fibroblast growth factor 21
-
Ogawa Y., Kurosu H., Yamamoto M., Nandi A., Rosenblatt K.P., Goetz R., Eliseenkova A.V., Mohammadi M., Kuro-o M. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc. Natl Acad. Sci. USA 2007, 104:7432-7437.
-
(2007)
Proc. Natl Acad. Sci. USA
, vol.104
, pp. 7432-7437
-
-
Ogawa, Y.1
Kurosu, H.2
Yamamoto, M.3
Nandi, A.4
Rosenblatt, K.P.5
Goetz, R.6
Eliseenkova, A.V.7
Mohammadi, M.8
Kuro-o, M.9
-
10
-
-
41649109108
-
BetaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c
-
Suzuki M., Uehara Y., Motomura-Matsuzaka K., Oki J., Koyama Y., Kimura M., Asada M., Komi-Kuramochi A., Oka S., Imamura T. BetaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol. Endocrinol. 2008, 22:1006-1014.
-
(2008)
Mol. Endocrinol.
, vol.22
, pp. 1006-1014
-
-
Suzuki, M.1
Uehara, Y.2
Motomura-Matsuzaka, K.3
Oki, J.4
Koyama, Y.5
Kimura, M.6
Asada, M.7
Komi-Kuramochi, A.8
Oka, S.9
Imamura, T.10
-
11
-
-
53949110053
-
Circadian expression of FGF21 is induced by PPARalpha activation in the mouse liver
-
Oishi K., Uchida D., Ishida N. Circadian expression of FGF21 is induced by PPARalpha activation in the mouse liver. FEBS Lett. 2008, 582:3639-3642.
-
(2008)
FEBS Lett.
, vol.582
, pp. 3639-3642
-
-
Oishi, K.1
Uchida, D.2
Ishida, N.3
-
12
-
-
70349564795
-
Ketogenic diet disrupts the circadian clock and increases hypofibrinolytic risk by inducing expression of plasminogen activator inhibitor-1
-
Oishi K., Uchida D., Ohkura N., Doi R., Ishida N., Kadota K., Horie S. Ketogenic diet disrupts the circadian clock and increases hypofibrinolytic risk by inducing expression of plasminogen activator inhibitor-1. Arterioscler. Thromb. Vasc. Biol. 2009, 29:1571-1577.
-
(2009)
Arterioscler. Thromb. Vasc. Biol.
, vol.29
, pp. 1571-1577
-
-
Oishi, K.1
Uchida, D.2
Ohkura, N.3
Doi, R.4
Ishida, N.5
Kadota, K.6
Horie, S.7
-
13
-
-
77957808319
-
PPARalpha deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPARgamma activation in the liver
-
Oishi K., Uchida D., Ohkura N., Horie S. PPARalpha deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPARgamma activation in the liver. Biochem. Biophys. Res. Commun. 2010, 401:313-318.
-
(2010)
Biochem. Biophys. Res. Commun.
, vol.401
, pp. 313-318
-
-
Oishi, K.1
Uchida, D.2
Ohkura, N.3
Horie, S.4
-
14
-
-
77952334180
-
Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha
-
Wang Y., Solt L.A., Burris T.P. Regulation of FGF21 expression and secretion by retinoic acid receptor-related orphan receptor alpha. J. Biol. Chem. 2010, 285:15668-15673.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 15668-15673
-
-
Wang, Y.1
Solt, L.A.2
Burris, T.P.3
-
15
-
-
76049093949
-
PGC-1alpha negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erb(alpha) axis
-
Estall J.L., Ruas J.L., Choi C.S., Laznik D., Badman M., Maratos-Flier E., Shulman G.I., Spiegelman B.M. PGC-1alpha negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erb(alpha) axis. Proc. Natl Acad. Sci. USA 2009, 106:22510-22515.
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 22510-22515
-
-
Estall, J.L.1
Ruas, J.L.2
Choi, C.S.3
Laznik, D.4
Badman, M.5
Maratos-Flier, E.6
Shulman, G.I.7
Spiegelman, B.M.8
-
16
-
-
78449244924
-
Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding
-
Tong X., Muchnik M., Chen Z., Patel M., Wu N., Joshi S., Rui L., Lazar M.A., Yin L. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J. Biol. Chem. 2010, 285:36401-36409.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 36401-36409
-
-
Tong, X.1
Muchnik, M.2
Chen, Z.3
Patel, M.4
Wu, N.5
Joshi, S.6
Rui, L.7
Lazar, M.A.8
Yin, L.9
-
17
-
-
79956113302
-
Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in Fatty acids in humans
-
Yu H., Xia F., Lam K.S., Wang Y., Bao Y., Zhang J., Gu Y., Zhou P., Lu J., Jia W., Xu A. Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in Fatty acids in humans. Clin. Chem. 2011, 57:691-700.
-
(2011)
Clin. Chem.
, vol.57
, pp. 691-700
-
-
Yu, H.1
Xia, F.2
Lam, K.S.3
Wang, Y.4
Bao, Y.5
Zhang, J.6
Gu, Y.7
Zhou, P.8
Lu, J.9
Jia, W.10
Xu, A.11
-
18
-
-
70349324370
-
Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver
-
Hotta Y., Nakamura H., Konishi M., Murata Y., Takagi H., Matsumura S., Inoue K., Fushiki T., Itoh N. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 2009, 150:4625-4633.
-
(2009)
Endocrinology
, vol.150
, pp. 4625-4633
-
-
Hotta, Y.1
Nakamura, H.2
Konishi, M.3
Murata, Y.4
Takagi, H.5
Matsumura, S.6
Inoue, K.7
Fushiki, T.8
Itoh, N.9
-
19
-
-
79953886306
-
Thermogenic activation induces FGF21 expression and release in brown adipose tissue
-
Hondares E., Iglesias R., Giralt A., Gonzalez F.J., Giralt M., Mampel T., Villarroya F. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J. Biol. Chem. 2011, 286:12983-12990.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 12983-12990
-
-
Hondares, E.1
Iglesias, R.2
Giralt, A.3
Gonzalez, F.J.4
Giralt, M.5
Mampel, T.6
Villarroya, F.7
-
20
-
-
33845407972
-
Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling
-
Moyers J.S., Shiyanova T.L., Mehrbod F., Dunbar J.D., Noblitt T.W., Otto K.A., Reifel-Miller A., Kharitonenkov A. Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling. J. Cell. Physiol. 2007, 210:1-6.
-
(2007)
J. Cell. Physiol.
, vol.210
, pp. 1-6
-
-
Moyers, J.S.1
Shiyanova, T.L.2
Mehrbod, F.3
Dunbar, J.D.4
Noblitt, T.W.5
Otto, K.A.6
Reifel-Miller, A.7
Kharitonenkov, A.8
-
21
-
-
47949111205
-
Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states
-
Muise E.S., Azzolina B., Kuo D.W., El-Sherbeini M., Tan Y., Yuan X., Mu J., Thompson J.R., Berger J.P., Wong K.K. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol. Pharmacol. 2008, 74:403-412.
-
(2008)
Mol. Pharmacol.
, vol.74
, pp. 403-412
-
-
Muise, E.S.1
Azzolina, B.2
Kuo, D.W.3
El-Sherbeini, M.4
Tan, Y.5
Yuan, X.6
Mu, J.7
Thompson, J.R.8
Berger, J.P.9
Wong, K.K.10
-
22
-
-
48249113959
-
Regulation of circadian gene expression in liver by systemic signals and hepatocyte oscillators
-
Kornmann B., Schaad O., Reinke H., Saini C., Schibler U. Regulation of circadian gene expression in liver by systemic signals and hepatocyte oscillators. Cold Spring Harb. Symp. Quant. Biol. 2007, 72:319-330.
-
(2007)
Cold Spring Harb. Symp. Quant. Biol.
, vol.72
, pp. 319-330
-
-
Kornmann, B.1
Schaad, O.2
Reinke, H.3
Saini, C.4
Schibler, U.5
-
23
-
-
33846944676
-
System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock
-
Kornmann B., Schaad O., Bujard H., Takahashi J.S., Schibler U. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 2007, 5:e34.
-
(2007)
PLoS Biol.
, vol.5
-
-
Kornmann, B.1
Schaad, O.2
Bujard, H.3
Takahashi, J.S.4
Schibler, U.5
-
24
-
-
34249686631
-
Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
-
Inagaki T., Dutchak P., Zhao G., Ding X., Gautron L., Parameswara V., Li Y., Goetz R., Mohammadi M., Esser V., Elmquist J.K., Gerard R.D., Burgess S.C., Hammer R.E., Mangelsdorf D.J., Kliewer S.A. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007, 5:415-425.
-
(2007)
Cell Metab.
, vol.5
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
Ding, X.4
Gautron, L.5
Parameswara, V.6
Li, Y.7
Goetz, R.8
Mohammadi, M.9
Esser, V.10
Elmquist, J.K.11
Gerard, R.D.12
Burgess, S.C.13
Hammer, R.E.14
Mangelsdorf, D.J.15
Kliewer, S.A.16
-
25
-
-
77952347202
-
FGF21 is dispensable for hypothermia induced by fasting in mice
-
Oishi K., Sakamoto K., Konishi M., Murata Y., Itoh N., Sei H. FGF21 is dispensable for hypothermia induced by fasting in mice. Neuro. Endocrinol. Lett. 2010, 31:198-202.
-
(2010)
Neuro. Endocrinol. Lett.
, vol.31
, pp. 198-202
-
-
Oishi, K.1
Sakamoto, K.2
Konishi, M.3
Murata, Y.4
Itoh, N.5
Sei, H.6
|