-
1
-
-
77952803107
-
Fractional differentiation and its applications (FDA08)
-
10.1088/0031-8949/2008/T136/011001
-
D. Baleanu, and J.A. Tenreiro Machado Fractional differentiation and its applications (FDA08) Phys. Scr. 2009 2009 011001 10.1088/0031-8949/2008/T136/ 011001
-
(2009)
Phys. Scr.
, vol.2009
, pp. 011001
-
-
Baleanu, D.1
Tenreiro MacHado, J.A.2
-
2
-
-
70449569030
-
The fractional finite Hankel transform and its applications in fractal space
-
10.1088/1751-8113/42/38/385201
-
X.Y. Jiang, and M.Y. Xu The fractional finite Hankel transform and its applications in fractal space J. Phys. A: Math. Theor. 42 2009 385201 10.1088/1751-8113/42/38/385201
-
(2009)
J. Phys. A: Math. Theor.
, vol.42
, pp. 385201
-
-
Jiang, X.Y.1
Xu, M.Y.2
-
3
-
-
75649086034
-
A fractional Dirac equation and its solution
-
10.1088/1751-8113/43/5/055203
-
S.I. Muslih, O.P. Agrawal, and D. Baleanu A fractional Dirac equation and its solution J. Phys. A: Math. Theor. 43 2010 055203 10.1088/1751-8113/43/5/ 055203
-
(2010)
J. Phys. A: Math. Theor.
, vol.43
, pp. 055203
-
-
Muslih, S.I.1
Agrawal, O.P.2
Baleanu, D.3
-
4
-
-
70449553626
-
Analysis of an axis-symmetric fractional diffusion-wave problem
-
10.1088/1751-8113/42/35/355208
-
N. zdemir, O.P. Agrawal, D. Karadeniz, and B.B. iskender Analysis of an axis-symmetric fractional diffusion-wave problem J. Phys. A: Math. Theor. 42 2009 355208 10.1088/1751-8113/42/35/355208
-
(2009)
J. Phys. A: Math. Theor.
, vol.42
, pp. 355208
-
-
Zdemir, N.1
Agrawal, O.P.2
Karadeniz, D.3
Iskender, B.B.4
-
5
-
-
72449126256
-
Differential equations with fractional derivative and universal map with memory
-
10.1088/1751-8113/42/46/465102
-
V.E. Tarasov Differential equations with fractional derivative and universal map with memory J. Phys. A: Math. Theor. 42 2009 465102 10.1088/1751-8113/42/46/465102
-
(2009)
J. Phys. A: Math. Theor.
, vol.42
, pp. 465102
-
-
Tarasov, V.E.1
-
10
-
-
77949264980
-
A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions
-
Ravi P. Agarwal, M. Benchohra, and S. Hamani A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions Acta Appl. Math. 109 2010 973 1033
-
(2010)
Acta Appl. Math.
, vol.109
, pp. 973-1033
-
-
Agarwal, R.P.1
Benchohra, M.2
Hamani, S.3
-
11
-
-
67650110018
-
A survey on semilinear differential equations and inclusions involving RiemannLiouville fractional derivative
-
Article ID 981728
-
Ravi P. Agarwal, M. Belmekki, and M. Benchohra A survey on semilinear differential equations and inclusions involving RiemannLiouville fractional derivative Adv. Difference Equ. 2009 Article ID 981728, 47pp
-
(2009)
Adv. Difference Equ.
-
-
Agarwal, R.P.1
Belmekki, M.2
Benchohra, M.3
-
12
-
-
67651108878
-
Nonlocal Cauchy problem for abstract fractional semilinear evolution equations
-
K. Balachandran, and J.Y. Park Nonlocal Cauchy problem for abstract fractional semilinear evolution equations Nonlinear Anal. 71 2009 4471 4475
-
(2009)
Nonlinear Anal.
, vol.71
, pp. 4471-4475
-
-
Balachandran, K.1
Park, J.Y.2
-
13
-
-
78049394851
-
Existence results for fractional impulsive integrodifferential equations in Banach spaces
-
K. Balachandran, S. Kiruthika, and J.J. Trujillo Existence results for fractional impulsive integrodifferential equations in Banach spaces Commun. Nonlinear Sci. Numer. Simul. 16 2011 1970 1977
-
(2011)
Commun. Nonlinear Sci. Numer. Simul.
, vol.16
, pp. 1970-1977
-
-
Balachandran, K.1
Kiruthika, S.2
Trujillo, J.J.3
-
14
-
-
0036680930
-
Some probability densities and fundamental solutions of fractional evolution equations
-
DOI 10.1016/S0960-0779(01)00208-9, PII S0960077901002089
-
M.M. El-Borai Some probability densities and fundamental solutions of fractional evolution equations Chaos Solitons Fractals 14 2002 433 440 (Pubitemid 34182465)
-
(2002)
Chaos, Solitons and Fractals
, vol.14
, Issue.3
, pp. 433-440
-
-
El-Borai, M.M.1
-
15
-
-
34547561589
-
The fundamental solutions for fractional evolution equations of parabolic type
-
M.M. El-Borai The fundamental solutions for fractional evolution equations of parabolic type J. Appl. Math. Stoch. Anal. 3 2004 197 211
-
(2004)
J. Appl. Math. Stoch. Anal.
, vol.3
, pp. 197-211
-
-
El-Borai, M.M.1
-
16
-
-
77956176473
-
On recent developments in the theory of abstract differential equations with fractional derivatives
-
E. Hernández, D. O'Regan, and K. Balachandran On recent developments in the theory of abstract differential equations with fractional derivatives Nonlinear Anal. 73 2010 3462 3471
-
(2010)
Nonlinear Anal.
, vol.73
, pp. 3462-3471
-
-
Hernández, E.1
O'Regan, D.2
Balachandran, K.3
-
17
-
-
77958009389
-
A class of fractional evolution equations and optimal controls
-
JinRong Wang, and Yong Zhou A class of fractional evolution equations and optimal controls Nonlinear Anal. 12 2011 262 272
-
(2011)
Nonlinear Anal.
, vol.12
, pp. 262-272
-
-
Wang, J.1
Zhou, Y.2
-
18
-
-
74149093181
-
Existence of mild solutions for fractional neutral evolution equations
-
Yong Zhou, and Feng Jiao Existence of mild solutions for fractional neutral evolution equations Comput. Math. Appl. 59 2010 1063 1077
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1063-1077
-
-
Zhou, Y.1
Jiao, F.2
-
19
-
-
77955515765
-
Nonlocal Cauchy problem for fractional evolution equations
-
Yong Zhou, and Feng Jiao Nonlocal Cauchy problem for fractional evolution equations Nonlinear Anal. 11 2010 4465 4475
-
(2010)
Nonlinear Anal.
, vol.11
, pp. 4465-4475
-
-
Zhou, Y.1
Jiao, F.2
-
20
-
-
63449090309
-
Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions
-
N. Abada, M. Benchohra, and H. Hammouche Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions J. Differential Equations 246 2009 3834 3863
-
(2009)
J. Differential Equations
, vol.246
, pp. 3834-3863
-
-
Abada, N.1
Benchohra, M.2
Hammouche, H.3
-
21
-
-
0036109774
-
Controllability for functional differential and integrodifferential inclusions in Banach spaces
-
DOI 10.1023/A:1015352503233
-
M. Benchohra, and S.K. Ntouyas Controllability for functional differential and integrodifferential inclusions in Banach spaces J. Optim. Theory Appl. 113 2002 449 472 (Pubitemid 39583340)
-
(2002)
Journal of Optimization Theory and Applications
, vol.113
, Issue.3
, pp. 449-472
-
-
Benchohra, M.1
Ntouyas, S.K.2
-
22
-
-
0345446522
-
Controllability results for semilinear evolution inclusions with nonlocal conditions
-
M. Benchohra, E.P. Gatsori, and S.K. Ntouyas Controllability results for semilinear evolution inclusions with nonlocal conditions J. Optim. Theory Appl. 118 2003 493 513
-
(2003)
J. Optim. Theory Appl.
, vol.118
, pp. 493-513
-
-
Benchohra, M.1
Gatsori, E.P.2
Ntouyas, S.K.3
-
23
-
-
14044253446
-
Controllability results for functional semilinear differential inclusions in Fréchet spaces
-
DOI 10.1016/j.na.2004.12.002, PII S0362546X04005681
-
M. Benchohra, and A. Ouahab Controllability results for functional semilinear differential inclusions in Fréchet spaces Nonlinear Anal. 61 2005 405 423 (Pubitemid 40274753)
-
(2005)
Nonlinear Analysis, Theory, Methods and Applications
, vol.61
, Issue.3
, pp. 405-423
-
-
Benchohra, M.1
Ouahab, A.2
-
25
-
-
34047270090
-
Controllability of evolution differential inclusions in Banach spaces
-
DOI 10.1016/j.na.2006.06.018, PII S0362546X06003415
-
Y.K. Chang, W.T. Li, and J.J. Nieto Controllability of evolution differential inclusions in Banach spaces Nonlinear Anal. 67 2007 623 632 (Pubitemid 46551430)
-
(2007)
Nonlinear Analysis, Theory, Methods and Applications
, vol.67
, Issue.2
, pp. 623-632
-
-
Chang, Y.-K.1
Li, W.-T.2
Nieto, J.J.3
-
26
-
-
43049133281
-
Controllability of mixed VolterraFredholm-type integro-differential inclusions in Banach spaces
-
Y.K. Chang, and D.N. Chalishajar Controllability of mixed VolterraFredholm-type integro-differential inclusions in Banach spaces J. Franklin Inst. 345 2008 499 507
-
(2008)
J. Franklin Inst.
, vol.345
, pp. 499-507
-
-
Chang, Y.K.1
Chalishajar, D.N.2
-
27
-
-
67651148207
-
Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators
-
Y.K. Chang, and J.J. Nieto Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators Numer. Funct. Anal. Optim. 30 2009 227 244
-
(2009)
Numer. Funct. Anal. Optim.
, vol.30
, pp. 227-244
-
-
Chang, Y.K.1
Nieto, J.J.2
-
28
-
-
28044441139
-
Optimal control of semilinear unbounded differential inclusions
-
DOI 10.1016/j.na.2004.12.030, PII S0362546X04006091
-
B.S. Mordukhovich, and D. Wang Optimal control of semilinear unbounded differential inclusions Nonlinear Anal. 63 2005 847 853 (Pubitemid 41691142)
-
(2005)
Nonlinear Analysis, Theory, Methods and Applications
, vol.63
, Issue.5-7
, pp. 847-853
-
-
Mordukhovich, B.S.1
Wang, D.2
-
29
-
-
34447552426
-
Euler polygonal method for metric dynamical systems
-
DOI 10.1016/j.ins.2007.05.002, PII S0020025507002216
-
J.J. Nieto, and R. Rodríguez-López Euler polygonal method for metric dynamical systems Inform. Sci. 177 2007 4256 4270 (Pubitemid 47071913)
-
(2007)
Information Sciences
, vol.177
, Issue.20
, pp. 4256-4270
-
-
Nieto, J.J.1
Rodriguez-Lopez, R.2
-
30
-
-
36148969345
-
Controllability for semilinear neutral functional differential inclusions via analytic semigroups
-
S.K. Ntouyas, and D. O'Regan Controllability for semilinear neutral functional differential inclusions via analytic semigroups J. Optim. Theory Appl. 135 2007 491 513
-
(2007)
J. Optim. Theory Appl.
, vol.135
, pp. 491-513
-
-
Ntouyas, S.K.1
O'Regan, D.2
-
32
-
-
0041545085
-
Infinite dimensional functional differential inclusions and necessary optimization conditions
-
X. Xiang, and N.U. Ahmed Infinite dimensional functional differential inclusions and necessary optimization conditions Nonlinear Anal. 30 1997 429 436
-
(1997)
Nonlinear Anal.
, vol.30
, pp. 429-436
-
-
Xiang, X.1
Ahmed, N.U.2
-
33
-
-
0042727052
-
Necessary conditions of optimality for differential inclusions on Banach space
-
PII S0362546X96002222
-
X. Xiang, and N.U. Ahmed Necessary conditions of optimality for differential inclusions on Banach space Nonlinear Anal. 30 1997 5437 5445 (Pubitemid 127421322)
-
(1997)
Nonlinear Analysis, Theory, Methods and Applications
, vol.30
, Issue.8
, pp. 5437-5445
-
-
Xiang, X.1
Ahmed, N.U.2
-
34
-
-
77950822326
-
Existence results for semilinear functional differential inclusions involving RiemannLiouville fractional derivative
-
Ravi P. Agarwal, M. Belmekki, and M. Benchohra Existence results for semilinear functional differential inclusions involving RiemannLiouville fractional derivative Dyn. Contin. Discrete Impuls. syst. 17 2010 347 361
-
(2010)
Dyn. Contin. Discrete Impuls. Syst.
, vol.17
, pp. 347-361
-
-
Agarwal, R.P.1
Belmekki, M.2
Benchohra, M.3
-
35
-
-
68349123813
-
Existence of solutions for fractional differential inclusions with antiperiodic boundary conditions
-
Article ID 625347
-
B. Ahmad, V. Otero-Espinar, Existence of solutions for fractional differential inclusions with antiperiodic boundary conditions, Bound. Value Probl. (2009) Article ID 625347, 11pp.
-
(2009)
Bound. Value Probl
, pp. 11
-
-
Ahmad, B.1
Otero-Espinar, V.2
-
36
-
-
77958541432
-
Existence results for fractional differential inclusions with separated boundary conditions
-
B. Ahmad Existence results for fractional differential inclusions with separated boundary conditions Bull. Korean Math. Soc. 47 2010 805 813
-
(2010)
Bull. Korean Math. Soc.
, vol.47
, pp. 805-813
-
-
Ahmad, B.1
-
37
-
-
58049138945
-
Some new existence results for fractional differential inclusions with boundary conditions
-
Y.K. Chang, and J.J. Nieto Some new existence results for fractional differential inclusions with boundary conditions Math. Comput. Modelling 49 2009 605 609
-
(2009)
Math. Comput. Modelling
, vol.49
, pp. 605-609
-
-
Chang, Y.K.1
Nieto, J.J.2
-
38
-
-
60349098158
-
On impulsive hyperbolic differential inclusions with nonlocal initial conditions
-
Y.K. Chang, J.J. Nieto, and W.S. Li On impulsive hyperbolic differential inclusions with nonlocal initial conditions J. Optim. Theory Appl. 140 2009 431 442
-
(2009)
J. Optim. Theory Appl.
, vol.140
, pp. 431-442
-
-
Chang, Y.K.1
Nieto, J.J.2
Li, W.S.3
-
40
-
-
58149197948
-
Fractional functional differential inclusions with finite delay
-
J. Henderson, and A. Ouahab Fractional functional differential inclusions with finite delay Nonlinear Anal. 70 2009 2091 2105
-
(2009)
Nonlinear Anal.
, vol.70
, pp. 2091-2105
-
-
Henderson, J.1
Ouahab, A.2
-
41
-
-
63449096160
-
Solvability of impulsive neutral evolution differential inclusions with state-dependent delay
-
W.S. Li, Y.K. Chang, and J.J. Nieto Solvability of impulsive neutral evolution differential inclusions with state-dependent delay Math. Comput. Modelling 49 2009 1920 1927
-
(2009)
Math. Comput. Modelling
, vol.49
, pp. 1920-1927
-
-
Li, W.S.1
Chang, Y.K.2
Nieto, J.J.3
-
42
-
-
53949105887
-
Some results for fractional boundary value problem of differential inclusions
-
A. Ouahab Some results for fractional boundary value problem of differential inclusions Nonlinear Anal. 69 2008 3877 3896
-
(2008)
Nonlinear Anal.
, vol.69
, pp. 3877-3896
-
-
Ouahab, A.1
-
45
-
-
0000017706
-
An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations
-
A. Lasota, and Z. Opial An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys. 13 1965 781 786
-
(1965)
Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys.
, vol.13
, pp. 781-786
-
-
Lasota, A.1
Opial, Z.2
-
46
-
-
0000249005
-
-
Contributions to the Theory of Games Princeton University Press Princeton, NJ
-
H.F. Bohnenblust, and S. Karlin On a Theorem of Ville Contributions to the Theory of Games vol. I 1950 Princeton University Press Princeton, NJ 155 160
-
(1950)
On A Theorem of Ville
, vol.1
, pp. 155-160
-
-
Bohnenblust, H.F.1
Karlin, S.2
-
47
-
-
59849085018
-
Controllability of VolterraFredholm type systems in Banach spaces
-
E. Herná ndez, and D. O'Regan Controllability of VolterraFredholm type systems in Banach spaces J. Franklin Inst. 346 2009 95 101
-
(2009)
J. Franklin Inst.
, vol.346
, pp. 95-101
-
-
Herná Ndez, E.1
O'Regan, D.2
-
48
-
-
61349101442
-
Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup
-
V. Obukhovski, and P. Zecca Controllability for systems governed by semilinear differential inclusions in a Banach space with a noncompact semigroup Nonlinear Anal. 70 2009 3424 3436
-
(2009)
Nonlinear Anal.
, vol.70
, pp. 3424-3436
-
-
Obukhovski, V.1
Zecca, P.2
|