-
1
-
-
84863067228
-
Computing the assignment of orthologous genes via genome rearrangement
-
Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Computing the assignment of orthologous genes via genome rearrangement. In: Proc. of the 3rd Asia-Pacific Bioinformatics Conf (APBC 2005), pp. 363-378 (2005)
-
(2005)
Proc. of the 3rd Asia-Pacific Bioinformatics Conf (APBC 2005)
, pp. 363-378
-
-
Chen, X.1
Zheng, J.2
Fu, Z.3
Nan, P.4
Zhong, Y.5
Lonardi, S.6
Jiang, T.7
-
2
-
-
35048899253
-
The greedy algorithm for the minimum common string partition problem
-
Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. Springer, Heidelberg
-
Chrobak, M., Kolman, P., Sgall, J.: The greedy algorithm for the minimum common string partition problem. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 84-95. Springer, Heidelberg (2004)
-
(2004)
LNCS
, vol.3122
, pp. 84-95
-
-
Chrobak, M.1
Kolman, P.2
Sgall, J.3
-
4
-
-
56649095725
-
Minimum common string partition parameterized
-
Crandall, K.A., Lagergren, J. (eds.) WABI 2008. Springer, Heidelberg
-
Damaschke, P.: Minimum common string partition parameterized. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 87-98. Springer, Heidelberg (2008)
-
(2008)
LNCS (LNBI)
, vol.5251
, pp. 87-98
-
-
Damaschke, P.1
-
9
-
-
25844508722
-
Minimum common string partition problem: Hardness and approximations
-
Fleischer, R., Trippen, G. (eds.) ISAAC 2004. Springer, Heidelberg
-
Goldstein, A., Kolman, P., Zheng, J.: Minimum common string partition problem: Hardness and approximations. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 484-495. Springer, Heidelberg (2004)
-
(2004)
LNCS
, vol.3341
, pp. 484-495
-
-
Goldstein, A.1
Kolman, P.2
Zheng, J.3
-
10
-
-
77955901692
-
Minimum common string partition revisited
-
doi:10.1007/s10878-010-9370-2
-
Jiang, H., Zhu, B., Zhu, D., Zhu, H.: Minimum common string partition revisited. J. of Combinatorial Optimization (2010), doi:10.1007/s10878-010-9370- 2
-
(2010)
J. of Combinatorial Optimization
-
-
Jiang, H.1
Zhu, B.2
Zhu, D.3
Zhu, H.4
-
11
-
-
27844530215
-
The greedy algorithm for edit distance with moves
-
Kaplan, H., Shafrir, N.: The greedy algorithm for edit distance with moves. Inf. Process. Lett. 97(1), 23-27 (2006)
-
(2006)
Inf. Process. Lett.
, vol.97
, Issue.1
, pp. 23-27
-
-
Kaplan, H.1
Shafrir, N.2
-
12
-
-
38149094111
-
Reversal distance for strings with duplicates: Linear time approximation using hitting set
-
Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. Springer, Heidelberg
-
Kolman, P., Walen, T.: Reversal distance for strings with duplicates: Linear time approximation using hitting set. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 279-289. Springer, Heidelberg (2007)
-
(2007)
LNCS
, vol.4368
, pp. 279-289
-
-
Kolman, P.1
Walen, T.2
-
13
-
-
25844492762
-
Approximating reversal distance for strings with bounded number of duplicates
-
Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. Springer, Heidelberg
-
Kolman, P.: Approximating reversal distance for strings with bounded number of duplicates. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 580-590. Springer, Heidelberg (2005)
-
(2005)
LNCS
, vol.3618
, pp. 580-590
-
-
Kolman, P.1
-
14
-
-
33751232626
-
Approximating reversal distance for strings with bounded number of duplicates
-
Kolman, P., Walen, T.: Approximating reversal distance for strings with bounded number of duplicates. Discrete Applied Mathematics 155(3), 327-336 (2007)
-
(2007)
Discrete Applied Mathematics
, vol.155
, Issue.3
, pp. 327-336
-
-
Kolman, P.1
Walen, T.2
-
15
-
-
84937421347
-
Edit distance with move operations
-
Apostolico, A., Takeda, M. (eds.) CPM 2002. Springer, Heidelberg
-
Shapira, D., Storer, J.: Edit distance with move operations. In: Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 85-98. Springer, Heidelberg (2002)
-
(2002)
LNCS
, vol.2373
, pp. 85-98
-
-
Shapira, D.1
Storer, J.2
|