메뉴 건너뛰기




Volumn , Issue , 2011, Pages 587-592

Using recurrent ANNs for the detection of epileptic seizures in EEG signals

Author keywords

Classification; Recurrent Artificial Neural Networks; Signal Processing

Indexed keywords

CLASSIFICATION SYSTEM; EEG CLASSIFICATION; EEG SIGNALS; EPILEPTIC SEIZURES; RECURRENT ARTIFICIAL NEURAL NETWORKS; RESEARCH TOPICS;

EID: 80051956295     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CEC.2011.5949672     Document Type: Conference Paper
Times cited : (9)

References (24)
  • 1
    • 80051961602 scopus 로고    scopus 로고
    • 2nd ed., Prentice Hall
    • S. Haykin, Networks (2nd ed.), Prentice Hall, 1999.
    • (1999) Networks
    • Haykin, S.1
  • 3
    • 34047120243 scopus 로고    scopus 로고
    • Seizure detection in EEG signals: A comparison of different approaches
    • DOI 10.1109/IEMBS.2006.260931, 4030642, 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'06
    • H. R. Mohseni, A. Maghsoudi, and B. Shamsollahi, "Seizure Detection in EEG signals: A Comparison of Different Approaches", Book Seizure Detection in EEG signals: A Comparison of Different Approaches, Series Seizure Detection in EEG signals: A Comparison of Different Approaches, ed., Editor ed.∧eds., 2006, pp. 6724-6727. (Pubitemid 46521471)
    • (2006) Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings , pp. 6724-6727
    • Mohseni, H.R.1    Maghsoudi, A.2    Shamsollahi, M.B.3
  • 4
    • 0035682573 scopus 로고    scopus 로고
    • Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    • R. G. Andrzejak, K. Lehnertz, C. Rieke, F. Mormann, P. David, and C. E. Elger, "Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state", Physical Review E, vol. 64, 2001.
    • (2001) Physical Review E , vol.64
    • Andrzejak, R.G.1    Lehnertz, K.2    Rieke, C.3    Mormann, F.4    David, P.5    Elger, C.E.6
  • 6
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on time-frequency analysis and articial neural networks
    • A. T. Tzallas, M. G. Tsipouras, and D. I. Fotiadis, "Automatic seizure detection based on time-frequency analysis and articial neural networks", Intell. Neuroscience, vol. 7, no. 3, 2007, pp. 1-13.
    • (2007) Intell. Neuroscience , vol.7 , Issue.3 , pp. 1-13
    • Tzallas, A.T.1    Tsipouras, M.G.2    Fotiadis, D.I.3
  • 9
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • DOI 10.1016/j.eswa.2006.02.005, PII S0957417406000844
    • A. Subasi, "EEG signal classification using wavelet feature extraction and a mixture of expert model", Expert Systems with Applications, vol. 32, no. 4, 2007, pp. 1084-1093. (Pubitemid 44821797)
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 12
    • 56349101801 scopus 로고    scopus 로고
    • Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy
    • H. Ocak, "Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy", Expert Systems with Applications, vol. 36, 2009, pp. 2027-2036.
    • (2009) Expert Systems with Applications , vol.36 , pp. 2027-2036
    • Ocak, H.1
  • 13
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • DOI 10.1016/j.eswa.2005.04.011, PII S0957417405000679
    • N. F. Guler, I. Ubeylib, E. D. Guler, and I. Guler, "Recurrent neural networks employing Lyapunov exponents for EEG signals classification", Expert Systems with Applications, vol. 29, 2005, pp. 506-514. (Pubitemid 41230775)
    • (2005) Expert Systems with Applications , vol.29 , Issue.3 , pp. 506-514
    • Guler, N.F.1    Ubeyli, E.D.2    Guler, I.3
  • 14
    • 71749109171 scopus 로고    scopus 로고
    • Lyapunov exponents/probabilistic neural networks for analysis of EEG signals
    • E. D. Übeyli, "Lyapunov exponents/probabilistic neural networks for analysis of EEG signals", Expert Systems with Applications, vol. 37, no. 2, 2009, pp. 985-992.
    • (2009) Expert Systems with Applications , vol.37 , Issue.2 , pp. 985-992
    • Übeyli, E.D.1
  • 15
    • 84856963277 scopus 로고    scopus 로고
    • Automated epileptic seizure detection in EEG signals using FastICA and neural network
    • N. Sivasankari, and K. Thanushkodi, "Automated Epileptic Seizure Detection in EEG Signals Using FastICA and Neural Network", Int. J. Advance Soft. Comput. Appl., vol. 1, no. 2, 2009.
    • (2009) Int. J. Advance Soft. Comput. Appl. , vol.1 , Issue.2
    • Sivasankari, N.1    Thanushkodi, K.2
  • 16
    • 22144480299 scopus 로고    scopus 로고
    • Epileptic seizure detection using dynamic wavelet network
    • DOI 10.1016/j.eswa.2005.04.007, PII S0957417405000606
    • A. Subasi, "Epileptic seizure detection using dynamic wavelet network", Expert Systems with Applications, vol. 29, 2005, pp. 343-355. (Pubitemid 40982998)
    • (2005) Expert Systems with Applications , vol.29 , Issue.2 , pp. 343-355
    • Subasi, A.1
  • 18
    • 78650178182 scopus 로고    scopus 로고
    • Generation and simplification of artificial neural networks by means of genetic programming
    • D. Rivero, J. Dorado, J. Rabuñal, and A. Pazos, "Generation and Simplification of Artificial Neural Networks by means of Genetic Programming", Neurocomputing, vol. 73, 2010, pp. 3200-3223.
    • (2010) Neurocomputing , vol.73 , pp. 3200-3223
    • Rivero, D.1    Dorado, J.2    Rabuñal, J.3    Pazos, A.4
  • 20
    • 55549147162 scopus 로고    scopus 로고
    • Modifying genetic programming for artificial neural network development for data mining
    • D. Rivero, J. Dorado, J. R. Rabuñal, and A. Pazos, "Modifying genetic programming for artificial neural network development for data mining", Soft Computing, vol. 13, no. 3, 2008, pp. 291-305.
    • (2008) Soft Computing , vol.13 , Issue.3 , pp. 291-305
    • Rivero, D.1    Dorado, J.2    Rabuñal, J.R.3    Pazos, A.4
  • 21
    • 0002702865 scopus 로고    scopus 로고
    • Towards designing artificial neural networks by evolution
    • PII S0096300397100054
    • X. Yao, and Y. Liu, "Toward designing artificial neural networks by evolution", Applied Mathematical Computation, vol. 91, no. 1, 1998, pp. 83-90. (Pubitemid 128682457)
    • (1998) Applied Mathematics and Computation , vol.91 , Issue.1 , pp. 83-90
    • Yao, X.1    Liu, Y.2
  • 23
    • 85008014942 scopus 로고    scopus 로고
    • Evolving artificial neural networks ensembles
    • X. Yao, and M. Islam, "Evolving artificial neural networks ensembles", IEEE Computational Intelligence Magazine, vol. 3, no. 1, 2008, pp. 31-42.
    • (2008) IEEE Computational Intelligence Magazine , vol.3 , Issue.1 , pp. 31-42
    • Yao, X.1    Islam, M.2
  • 24
    • 33745827410 scopus 로고    scopus 로고
    • Multi-network evolutionary systems and automatic decomposition of complex problems
    • DOI 10.1080/14689360600659772, PII G71700676W2V6043
    • V. Khare, X. Yao, and B. Sendhoff, "Multi-network evolutionary systems and automatic problem decomposition", International Journal of General Systems, vol. 35, no. 3, 2006, pp. 259-274. (Pubitemid 44034545)
    • (2006) International Journal of General Systems , vol.35 , Issue.3 , pp. 259-274
    • Khare, V.R.1    Yao, X.2    Sendhoff, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.