-
1
-
-
41549103892
-
Vector spaces spanned by the angle sums of polytopes
-
Camenga, K.: Vector spaces spanned by the angle sums of polytopes. Beiträge Algebra Geom. 47(2), 447-462 (2006).
-
(2006)
Beiträge Algebra Geom.
, vol.47
, Issue.2
, pp. 447-462
-
-
Camenga, K.1
-
2
-
-
84887218221
-
A Curios Identity and the Volume of the Root spherical simplex
-
Mat. Appl. With an appendix by J. Stembridge
-
De Concini, C., Procesi, C.: A Curios Identity and the Volume of the Root spherical simplex. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. With an appendix by J. Stembridge. (17) (2006).
-
(2006)
Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei
, vol.9
, Issue.17
-
-
De Concini, C.1
Procesi, C.2
-
4
-
-
77952082570
-
A geometric interpretation of the characteristic polynomial of reflection arrangements
-
Drton, M., Klivans, C.: A geometric interpretation of the characteristic polynomial of reflection arrangements. Proc. Am. Math. Soc. 138(8) (2010).
-
(2010)
Proc. Am. Math. Soc
, vol.138
, Issue.8
-
-
Drton, M.1
Klivans, C.2
-
6
-
-
84968483638
-
On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-radon partitions and orientations of graphs
-
Greene, C., Zaslavsky, T.: On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-radon partitions and orientations of graphs. Trans. Am. Math. Soc. 280 (1983).
-
(1983)
Trans. Am. Math. Soc
, vol.280
-
-
Greene, C.1
Zaslavsky, T.2
-
7
-
-
80051819441
-
Las: Convexity in oriented matroids
-
Vergnas, M. Las: Convexity in oriented matroids. J. Combin. Theory, Ser. B 29 (1980).
-
(1980)
J. Combin. Theory, Ser
, Issue.B
, pp. 29
-
-
Vergnas, M.1
-
9
-
-
34347166234
-
On the foundations of combinatorial theory I. Theory of Möbius functions Z
-
Rota, G.-C.: On the foundations of combinatorial theory I. Theory of Möbius functions. Z. Wahrscheinlichkeitstheor. Verw. 2 (1964).
-
(1964)
Wahrscheinlichkeitstheor. Verw
, vol.2
-
-
Rota, G.-C.1
-
10
-
-
0041303008
-
Polytopes with centrally symmetric faces
-
Shephard, G. C.: Polytopes with centrally symmetric faces. Canad. J. Math. 19 (1967).
-
(1967)
Canad. J. Math
, vol.19
-
-
Shephard, G.C.1
-
11
-
-
54449089109
-
An introduction to hyperplane arrangements
-
IAS/Park City Math, Providence: Amer. Math. Soc
-
Stanley, R.: An introduction to hyperplane arrangements. In: Geometric Combinatorics. IAS/Park City Math., vol. 13. Amer. Math. Soc., Providence (2007).
-
(2007)
Geometric Combinatorics
, vol.13
-
-
Stanley, R.1
-
12
-
-
0001575794
-
Facing up to arrangements: face-count formulas for partitions of space by hyperplanes
-
Zaslavsky, T.: Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Mem. Amer. Math. Soc. 1(1), 154 (1975).
-
(1975)
Mem. Amer. Math. Soc.
, vol.1
, Issue.1
, pp. 154
-
-
Zaslavsky, T.1
-
13
-
-
0004159676
-
-
Graduate Texts in Mathematics, New York: Springer
-
Ziegler, G.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995).
-
(1995)
Lectures on Polytopes
, vol.152
-
-
Ziegler, G.1
|