메뉴 건너뛰기




Volumn 65, Issue 3, 2011, Pages 255-270

Dynamical properties and simulation of a new Lorenz-like chaotic system

Author keywords

Center Manifold Theorem; Homoclinic and heteroclinic orbit; Hopf bifurcation; Lorenz type system; Pitchfork bifurcation

Indexed keywords

CENTER MANIFOLD THEOREM; CHEN SYSTEM; DYNAMICAL PROPERTIES; HETEROCLINIC ORBIT; HOMOCLINIC; LORENZ SYSTEM; LORENZ-TYPE SYSTEM; NON-EXISTENCE; PITCHFORK BIFURCATIONS; STABLE MANIFOLD; UNSTABLE MANIFOLD;

EID: 80051801979     PISSN: 0924090X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11071-010-9887-z     Document Type: Article
Times cited : (61)

References (31)
  • 2
    • 0343689904 scopus 로고
    • Synchronization in chaotic systems
    • 1038263 10.1103/PhysRevLett.64.821
    • L.M. Pecora T.L. Carroll 1990 Synchronization in chaotic systems Phys. Rev. Lett. 64 8 821 824 1038263 10.1103/PhysRevLett.64.821
    • (1990) Phys. Rev. Lett. , vol.64 , Issue.8 , pp. 821-824
    • Pecora, L.M.1    Carroll, T.L.2
  • 4
    • 0024735939 scopus 로고    scopus 로고
    • Chaos theory for the biomedical engineer
    • R.C. Eberhart 2002 Chaos theory for the biomedical engineer IEEE Eng. Med. Biol. Mag. 3 41 45
    • (2002) IEEE Eng. Med. Biol. Mag. , vol.3 , pp. 41-45
    • Eberhart, R.C.1
  • 5
    • 12244304206 scopus 로고    scopus 로고
    • Breaking projective chaos synchronization secure communication using filtering and generalized synchronization
    • DOI 10.1016/j.chaos.2004.09.038, PII S0960077904005727
    • G. Alvarez S. Li F. Montoya G. Pastor M. Romera 2005 Breaking projective chaos synchronization secure communication using filtering and generalized synchronization Chaos Solitons Fractals 24 775 783 1068.94002 10.1016/j.chaos.2004.09.038 (Pubitemid 40114334)
    • (2005) Chaos, Solitons and Fractals , vol.24 , Issue.3 , pp. 775-783
    • Alvarez, G.1    Li, S.2    Montoya, F.3    Pastor, G.4    Romera, M.5
  • 6
    • 77955776243 scopus 로고    scopus 로고
    • Dynamics of a new Lorenz-like chaotic system
    • 1202.34083 10.1016/j.nonrwa.2009.09.001
    • Y. Liu Q. Yang 2010 Dynamics of a new Lorenz-like chaotic system Nonlinear Anal.: Real Word Appl. 11 4 2563 2572 1202.34083 10.1016/j.nonrwa. 2009.09.001
    • (2010) Nonlinear Anal.: Real Word Appl. , vol.11 , Issue.4 , pp. 2563-2572
    • Liu, Y.1    Yang, Q.2
  • 9
    • 0141839040 scopus 로고    scopus 로고
    • On stability and bifurcation of Chen's system
    • 2013020 1069.34060 10.1016/S0960-0779(03)00334-5
    • T. Li G. Chen Y. Tang 2004 On stability and bifurcation of Chen's system Chaos Solitons Fractals 19 1269 1282 2013020 1069.34060 10.1016/S0960-0779(03) 00334-5
    • (2004) Chaos Solitons Fractals , vol.19 , pp. 1269-1282
    • Li, T.1    Chen, G.2    Tang, Y.3
  • 11
    • 0034238522 scopus 로고    scopus 로고
    • Bifurcation analysis of Chen's equation
    • 1787214 1090.37531
    • T. Ueta G. Chen 2000 Bifurcation analysis of Chen's equation Int. J. Bifurc. Chaos 10 1917 1931 1787214 1090.37531
    • (2000) Int. J. Bifurc. Chaos , vol.10 , pp. 1917-1931
    • Ueta, T.1    Chen, G.2
  • 12
    • 0037411722 scopus 로고    scopus 로고
    • Hopf bifurcation in the Lü system
    • 1978275 1029.34030 10.1016/S0960-0779(02)00573-8
    • Y. Yu S. Zhang 2003 Hopf bifurcation in the Lü system Chaos Solitons Fractals 17 901 906 1978275 1029.34030 10.1016/S0960-0779(02)00573-8
    • (2003) Chaos Solitons Fractals , vol.17 , pp. 901-906
    • Yu, Y.1    Zhang, S.2
  • 13
    • 1642303941 scopus 로고    scopus 로고
    • Hopf bifurcation analysis in the Lü system
    • 2047336 1061.37029 10.1016/j.chaos.2003.12.063
    • Y. Yu S. Zhang 2004 Hopf bifurcation analysis in the Lü system Chaos Solitons Fractals 21 1215 1220 2047336 1061.37029 10.1016/j.chaos.2003.12.063
    • (2004) Chaos Solitons Fractals , vol.21 , pp. 1215-1220
    • Yu, Y.1    Zhang, S.2
  • 14
    • 62549102915 scopus 로고    scopus 로고
    • Stability and Hopf bifurcation analysis of a new system
    • 2518911 1197.34096 10.1016/j.chaos.2007.01.107
    • K. Huang G. Yang 2009 Stability and Hopf bifurcation analysis of a new system Chaos Solitons Fractals 39 567 578 2518911 1197.34096 10.1016/j.chaos.2007.01.107
    • (2009) Chaos Solitons Fractals , vol.39 , pp. 567-578
    • Huang, K.1    Yang, G.2
  • 16
    • 33845539938 scopus 로고    scopus 로고
    • On homoclinic and heteroclinic orbits of Chen's system
    • DOI 10.1142/S021812740601663X
    • T. Li G. Chen 2006 On homoclinic and heteroclinic orbits of Chen's system Int. J. Bifurc. Chaos 16 3035 3041 1149.34030 10.1142/S021812740601663X (Pubitemid 44924978)
    • (2006) International Journal of Bifurcation and Chaos , vol.16 , Issue.10 , pp. 3035-3041
    • Li, T.1    Chen, G.2    Chen, G.3
  • 17
    • 67649882006 scopus 로고    scopus 로고
    • Heteroclinic orbits in the T and the Lü systems
    • 2543014 1198.37029 10.1016/j.chaos.2008.10.024
    • G. Tigan D. Constantinescu 2009 Heteroclinic orbits in the T and the Lü systems Chaos Solitons Fractals 42 20 23 2543014 1198.37029 10.1016/j.chaos.2008.10.024
    • (2009) Chaos Solitons Fractals , vol.42 , pp. 20-23
    • Tigan, G.1    Constantinescu, D.2
  • 18
    • 40849136288 scopus 로고    scopus 로고
    • Bifurcation analysis of a new Lorenz-like chaotic system
    • 2411546 1153.37356 10.1016/j.chaos.2007.11.008
    • L.F. Mello M. Messias D.C. Braga 2008 Bifurcation analysis of a new Lorenz-like chaotic system Chaos Solitons Fractals 37 1244 1255 2411546 1153.37356 10.1016/j.chaos.2007.11.008
    • (2008) Chaos Solitons Fractals , vol.37 , pp. 1244-1255
    • Mello, L.F.1    Messias, M.2    Braga, D.C.3
  • 19
    • 0036696341 scopus 로고    scopus 로고
    • On a generalized Lorenz canonical form of chaotic systems
    • 1043.37023 10.1142/S0218127402005467
    • S. Čelikovsky G. Chen 2002 On a generalized Lorenz canonical form of chaotic systems Int. J. Bifurc. Chaos 12 1789 1812 1043.37023 10.1142/S0218127402005467
    • (2002) Int. J. Bifurc. Chaos , vol.12 , pp. 1789-1812
    • Čelikovsky, S.1    Chen, G.2
  • 20
    • 85042032418 scopus 로고    scopus 로고
    • A unified Lorenz-type system and its canonical form
    • 2282907 10.1142/S0218127406015751
    • Q. Yang G. Chen T. Zhou 2006 A unified Lorenz-type system and its canonical form Int. J. Bifurc. Chaos 16 1855 1871 2282907 10.1142/ S0218127406015751
    • (2006) Int. J. Bifurc. Chaos , vol.16 , pp. 1855-1871
    • Yang, Q.1    Chen, G.2    Zhou, T.3
  • 21
    • 5344269568 scopus 로고
    • Driving systems with chaotic signals
    • 10.1103/PhysRevA.44.2374
    • L.M. Pecora T.L. Carroll 1991 Driving systems with chaotic signals Phys. Rev. A 44 4 2374 2383 10.1103/PhysRevA.44.2374
    • (1991) Phys. Rev. A , vol.44 , Issue.4 , pp. 2374-2383
    • Pecora, L.M.1    Carroll, T.L.2
  • 23
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    • E.N. Lorenz 1963 Deterministic nonperiodic flow J. Atmos. Sci. 20 130 141 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
    • (1963) J. Atmos. Sci. , vol.20 , pp. 130-141
    • Lorenz, E.N.1
  • 24
    • 0000863462 scopus 로고
    • Bilinear systems and chaos
    • 1303292 0823.93026
    • S. Čelikovský A. Vaěcček 1994 Bilinear systems and chaos Kybernetika 30 403 424 1303292 0823.93026
    • (1994) Kybernetika , vol.30 , pp. 403-424
    • Čelikovský, S.1    Vaěcček, A.2
  • 26
    • 14544275749 scopus 로고    scopus 로고
    • Hyperbolic-type generalized Lorenz system and its canonical form
    • Barcelona, Spain (2002), in CD ROM
    • Čelikovský, S., Chen, G.: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congrss of IFAC, Barcelona, Spain (2002), in CD ROM
    • Proc. 15th Triennial World Congrss of IFAC
    • Čelikovský, S.1
  • 27
    • 20444502538 scopus 로고    scopus 로고
    • On the generalized Lorenz canonical form
    • DOI 10.1016/j.chaos.2005.02.040, PII S0960077905001931
    • S. Čelikovský G. Chen 2005 On the generalized Lorenz canonical form Chaos Solitons Fractals 26 1271 1276 2149315 1100.37016 10.1016/j.chaos.2005.02.040 (Pubitemid 40821855)
    • (2005) Chaos, Solitons and Fractals , vol.26 , Issue.5 , pp. 1271-1276
    • Celikovsky, S.1    Chen, G.2
  • 28
    • 49549126801 scopus 로고
    • An equation for continuous chaos
    • 10.1016/0375-9601(76)90101-8
    • O.E. Rössler 1976 An equation for continuous chaos Phys. Lett. A 57 397 398 10.1016/0375-9601(76)90101-8
    • (1976) Phys. Lett. A , vol.57 , pp. 397-398
    • Rössler, O.E.1
  • 29
    • 0347740484 scopus 로고    scopus 로고
    • The diffusionless Lorenz equations; Šilnikov bifurcations and reduction to an explicit map
    • 1764166 10.1016/S0167-2789(00)00033-6
    • G. Vanderschrier L. Maas 2000 The diffusionless Lorenz equations; Šilnikov bifurcations and reduction to an explicit map Physica D 141 19 36 1764166 10.1016/S0167-2789(00)00033-6
    • (2000) Physica D , vol.141 , pp. 19-36
    • Vanderschrier, G.1    Maas, L.2
  • 30
    • 33751555569 scopus 로고
    • Some simple chaotic flows
    • 1381868 10.1103/PhysRevE.50.R647
    • J.C. Sprott 1994 Some simple chaotic flows Phys. Rev. E 50 2 R647 R650 1381868 10.1103/PhysRevE.50.R647
    • (1994) Phys. Rev. e , vol.50 , Issue.2
    • Sprott, J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.