-
1
-
-
38749135766
-
Inductorless Chua's circuit: Experimental time series analysis
-
doi: 10.1155/2007/83893.[ArticleID83893]
-
Rubinger, R.M., Nascimento, A.W.M., Mello, L.F., Rubinger, C.P.L., Manzanares Filho, N., lbuquerque, H.A.: Inductorless Chua's circuit: experimental time series analysis. Math. Probl. Eng. 2007 (2007). doi: 10.1155/2007/83893. [Article ID 83893]
-
(2007)
Math. Probl. Eng.
, vol.2007
-
-
Rubinger, R.M.1
Nascimento, A.W.M.2
Mello, L.F.3
Rubinger, C.P.L.4
Manzanares Filho, N.5
Lbuquerque, H.A.6
-
2
-
-
0343689904
-
Synchronization in chaotic systems
-
1038263 10.1103/PhysRevLett.64.821
-
L.M. Pecora T.L. Carroll 1990 Synchronization in chaotic systems Phys. Rev. Lett. 64 8 821 824 1038263 10.1103/PhysRevLett.64.821
-
(1990)
Phys. Rev. Lett.
, vol.64
, Issue.8
, pp. 821-824
-
-
Pecora, L.M.1
Carroll, T.L.2
-
4
-
-
0024735939
-
Chaos theory for the biomedical engineer
-
R.C. Eberhart 2002 Chaos theory for the biomedical engineer IEEE Eng. Med. Biol. Mag. 3 41 45
-
(2002)
IEEE Eng. Med. Biol. Mag.
, vol.3
, pp. 41-45
-
-
Eberhart, R.C.1
-
5
-
-
12244304206
-
Breaking projective chaos synchronization secure communication using filtering and generalized synchronization
-
DOI 10.1016/j.chaos.2004.09.038, PII S0960077904005727
-
G. Alvarez S. Li F. Montoya G. Pastor M. Romera 2005 Breaking projective chaos synchronization secure communication using filtering and generalized synchronization Chaos Solitons Fractals 24 775 783 1068.94002 10.1016/j.chaos.2004.09.038 (Pubitemid 40114334)
-
(2005)
Chaos, Solitons and Fractals
, vol.24
, Issue.3
, pp. 775-783
-
-
Alvarez, G.1
Li, S.2
Montoya, F.3
Pastor, G.4
Romera, M.5
-
6
-
-
77955776243
-
Dynamics of a new Lorenz-like chaotic system
-
1202.34083 10.1016/j.nonrwa.2009.09.001
-
Y. Liu Q. Yang 2010 Dynamics of a new Lorenz-like chaotic system Nonlinear Anal.: Real Word Appl. 11 4 2563 2572 1202.34083 10.1016/j.nonrwa. 2009.09.001
-
(2010)
Nonlinear Anal.: Real Word Appl.
, vol.11
, Issue.4
, pp. 2563-2572
-
-
Liu, Y.1
Yang, Q.2
-
9
-
-
0141839040
-
On stability and bifurcation of Chen's system
-
2013020 1069.34060 10.1016/S0960-0779(03)00334-5
-
T. Li G. Chen Y. Tang 2004 On stability and bifurcation of Chen's system Chaos Solitons Fractals 19 1269 1282 2013020 1069.34060 10.1016/S0960-0779(03) 00334-5
-
(2004)
Chaos Solitons Fractals
, vol.19
, pp. 1269-1282
-
-
Li, T.1
Chen, G.2
Tang, Y.3
-
11
-
-
0034238522
-
Bifurcation analysis of Chen's equation
-
1787214 1090.37531
-
T. Ueta G. Chen 2000 Bifurcation analysis of Chen's equation Int. J. Bifurc. Chaos 10 1917 1931 1787214 1090.37531
-
(2000)
Int. J. Bifurc. Chaos
, vol.10
, pp. 1917-1931
-
-
Ueta, T.1
Chen, G.2
-
12
-
-
0037411722
-
Hopf bifurcation in the Lü system
-
1978275 1029.34030 10.1016/S0960-0779(02)00573-8
-
Y. Yu S. Zhang 2003 Hopf bifurcation in the Lü system Chaos Solitons Fractals 17 901 906 1978275 1029.34030 10.1016/S0960-0779(02)00573-8
-
(2003)
Chaos Solitons Fractals
, vol.17
, pp. 901-906
-
-
Yu, Y.1
Zhang, S.2
-
13
-
-
1642303941
-
Hopf bifurcation analysis in the Lü system
-
2047336 1061.37029 10.1016/j.chaos.2003.12.063
-
Y. Yu S. Zhang 2004 Hopf bifurcation analysis in the Lü system Chaos Solitons Fractals 21 1215 1220 2047336 1061.37029 10.1016/j.chaos.2003.12.063
-
(2004)
Chaos Solitons Fractals
, vol.21
, pp. 1215-1220
-
-
Yu, Y.1
Zhang, S.2
-
14
-
-
62549102915
-
Stability and Hopf bifurcation analysis of a new system
-
2518911 1197.34096 10.1016/j.chaos.2007.01.107
-
K. Huang G. Yang 2009 Stability and Hopf bifurcation analysis of a new system Chaos Solitons Fractals 39 567 578 2518911 1197.34096 10.1016/j.chaos.2007.01.107
-
(2009)
Chaos Solitons Fractals
, vol.39
, pp. 567-578
-
-
Huang, K.1
Yang, G.2
-
16
-
-
33845539938
-
On homoclinic and heteroclinic orbits of Chen's system
-
DOI 10.1142/S021812740601663X
-
T. Li G. Chen 2006 On homoclinic and heteroclinic orbits of Chen's system Int. J. Bifurc. Chaos 16 3035 3041 1149.34030 10.1142/S021812740601663X (Pubitemid 44924978)
-
(2006)
International Journal of Bifurcation and Chaos
, vol.16
, Issue.10
, pp. 3035-3041
-
-
Li, T.1
Chen, G.2
Chen, G.3
-
17
-
-
67649882006
-
Heteroclinic orbits in the T and the Lü systems
-
2543014 1198.37029 10.1016/j.chaos.2008.10.024
-
G. Tigan D. Constantinescu 2009 Heteroclinic orbits in the T and the Lü systems Chaos Solitons Fractals 42 20 23 2543014 1198.37029 10.1016/j.chaos.2008.10.024
-
(2009)
Chaos Solitons Fractals
, vol.42
, pp. 20-23
-
-
Tigan, G.1
Constantinescu, D.2
-
18
-
-
40849136288
-
Bifurcation analysis of a new Lorenz-like chaotic system
-
2411546 1153.37356 10.1016/j.chaos.2007.11.008
-
L.F. Mello M. Messias D.C. Braga 2008 Bifurcation analysis of a new Lorenz-like chaotic system Chaos Solitons Fractals 37 1244 1255 2411546 1153.37356 10.1016/j.chaos.2007.11.008
-
(2008)
Chaos Solitons Fractals
, vol.37
, pp. 1244-1255
-
-
Mello, L.F.1
Messias, M.2
Braga, D.C.3
-
19
-
-
0036696341
-
On a generalized Lorenz canonical form of chaotic systems
-
1043.37023 10.1142/S0218127402005467
-
S. Čelikovsky G. Chen 2002 On a generalized Lorenz canonical form of chaotic systems Int. J. Bifurc. Chaos 12 1789 1812 1043.37023 10.1142/S0218127402005467
-
(2002)
Int. J. Bifurc. Chaos
, vol.12
, pp. 1789-1812
-
-
Čelikovsky, S.1
Chen, G.2
-
20
-
-
85042032418
-
A unified Lorenz-type system and its canonical form
-
2282907 10.1142/S0218127406015751
-
Q. Yang G. Chen T. Zhou 2006 A unified Lorenz-type system and its canonical form Int. J. Bifurc. Chaos 16 1855 1871 2282907 10.1142/ S0218127406015751
-
(2006)
Int. J. Bifurc. Chaos
, vol.16
, pp. 1855-1871
-
-
Yang, Q.1
Chen, G.2
Zhou, T.3
-
21
-
-
5344269568
-
Driving systems with chaotic signals
-
10.1103/PhysRevA.44.2374
-
L.M. Pecora T.L. Carroll 1991 Driving systems with chaotic signals Phys. Rev. A 44 4 2374 2383 10.1103/PhysRevA.44.2374
-
(1991)
Phys. Rev. A
, vol.44
, Issue.4
, pp. 2374-2383
-
-
Pecora, L.M.1
Carroll, T.L.2
-
23
-
-
0000241853
-
Deterministic nonperiodic flow
-
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
-
E.N. Lorenz 1963 Deterministic nonperiodic flow J. Atmos. Sci. 20 130 141 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
24
-
-
0000863462
-
Bilinear systems and chaos
-
1303292 0823.93026
-
S. Čelikovský A. Vaěcček 1994 Bilinear systems and chaos Kybernetika 30 403 424 1303292 0823.93026
-
(1994)
Kybernetika
, vol.30
, pp. 403-424
-
-
Čelikovský, S.1
Vaěcček, A.2
-
26
-
-
14544275749
-
Hyperbolic-type generalized Lorenz system and its canonical form
-
Barcelona, Spain (2002), in CD ROM
-
Čelikovský, S., Chen, G.: Hyperbolic-type generalized Lorenz system and its canonical form. In: Proc. 15th Triennial World Congrss of IFAC, Barcelona, Spain (2002), in CD ROM
-
Proc. 15th Triennial World Congrss of IFAC
-
-
Čelikovský, S.1
-
27
-
-
20444502538
-
On the generalized Lorenz canonical form
-
DOI 10.1016/j.chaos.2005.02.040, PII S0960077905001931
-
S. Čelikovský G. Chen 2005 On the generalized Lorenz canonical form Chaos Solitons Fractals 26 1271 1276 2149315 1100.37016 10.1016/j.chaos.2005.02.040 (Pubitemid 40821855)
-
(2005)
Chaos, Solitons and Fractals
, vol.26
, Issue.5
, pp. 1271-1276
-
-
Celikovsky, S.1
Chen, G.2
-
28
-
-
49549126801
-
An equation for continuous chaos
-
10.1016/0375-9601(76)90101-8
-
O.E. Rössler 1976 An equation for continuous chaos Phys. Lett. A 57 397 398 10.1016/0375-9601(76)90101-8
-
(1976)
Phys. Lett. A
, vol.57
, pp. 397-398
-
-
Rössler, O.E.1
-
29
-
-
0347740484
-
The diffusionless Lorenz equations; Šilnikov bifurcations and reduction to an explicit map
-
1764166 10.1016/S0167-2789(00)00033-6
-
G. Vanderschrier L. Maas 2000 The diffusionless Lorenz equations; Šilnikov bifurcations and reduction to an explicit map Physica D 141 19 36 1764166 10.1016/S0167-2789(00)00033-6
-
(2000)
Physica D
, vol.141
, pp. 19-36
-
-
Vanderschrier, G.1
Maas, L.2
-
30
-
-
33751555569
-
Some simple chaotic flows
-
1381868 10.1103/PhysRevE.50.R647
-
J.C. Sprott 1994 Some simple chaotic flows Phys. Rev. E 50 2 R647 R650 1381868 10.1103/PhysRevE.50.R647
-
(1994)
Phys. Rev. e
, vol.50
, Issue.2
-
-
Sprott, J.C.1
|