-
1
-
-
0001717061
-
Patterns of dynamical behavior in single-species populations
-
Hassell M.P., Lawton J.H., May R.M. Patterns of dynamical behavior in single-species populations. J. Animal Ecol. 1976, 45:471-486.
-
(1976)
J. Animal Ecol.
, vol.45
, pp. 471-486
-
-
Hassell, M.P.1
Lawton, J.H.2
May, R.M.3
-
2
-
-
0024528411
-
Are ecological systems chaotic and if not, why not?
-
Berryman A.A., Millstein J.A. Are ecological systems chaotic and if not, why not?. Trends Ecol. Evol. 1989, 4:26-28.
-
(1989)
Trends Ecol. Evol.
, vol.4
, pp. 26-28
-
-
Berryman, A.A.1
Millstein, J.A.2
-
3
-
-
1642395722
-
Chaos in natural populations: edge or wedge?
-
Rai V. Chaos in natural populations: edge or wedge?. Ecol. Complexity 2004, 1:127-138.
-
(2004)
Ecol. Complexity
, vol.1
, pp. 127-138
-
-
Rai, V.1
-
4
-
-
0025956240
-
Chaos in a three-species food chain
-
Hastings A., Powell T. Chaos in a three-species food chain. Ecology 1991, 72:896-903.
-
(1991)
Ecology
, vol.72
, pp. 896-903
-
-
Hastings, A.1
Powell, T.2
-
5
-
-
0036833066
-
Study of a Leslie-Gower-type tritrophic population model
-
Aziz-Alaoui M.A. Study of a Leslie-Gower-type tritrophic population model. Chaos Solitons Fractals 2002, 14:1275-1293.
-
(2002)
Chaos Solitons Fractals
, vol.14
, pp. 1275-1293
-
-
Aziz-Alaoui, M.A.1
-
6
-
-
0036722199
-
Chaos in three species ratio dependent food chain
-
Gakkhar S., Naji R.K. Chaos in three species ratio dependent food chain. Chaos Solitons Fractals 2002, 14:771-778.
-
(2002)
Chaos Solitons Fractals
, vol.14
, pp. 771-778
-
-
Gakkhar, S.1
Naji, R.K.2
-
7
-
-
84951601313
-
Chaos in a three species food chain
-
Klebanoff A., Hastings A. Chaos in a three species food chain. J. Math. Biol. 1994, 32:427-451.
-
(1994)
J. Math. Biol.
, vol.32
, pp. 427-451
-
-
Klebanoff, A.1
Hastings, A.2
-
8
-
-
0027338779
-
Chaos in a periodically forced predator-prey ecosystem model
-
Sabin G.C.W., Summers D. Chaos in a periodically forced predator-prey ecosystem model. Math. Biosci. 1993, 113:91-113.
-
(1993)
Math. Biosci.
, vol.113
, pp. 91-113
-
-
Sabin, G.C.W.1
Summers, D.2
-
9
-
-
0142228449
-
Dynamics and synchronization of the Hastings-Powell model of the food chain
-
Lonngren K.E., Bai E.W., Ucar A. Dynamics and synchronization of the Hastings-Powell model of the food chain. Chaos Solitons Fractals 2004, 20:387-393.
-
(2004)
Chaos Solitons Fractals
, vol.20
, pp. 387-393
-
-
Lonngren, K.E.1
Bai, E.W.2
Ucar, A.3
-
10
-
-
0000384881
-
Chaos in a three-species food chain with a lower bound on the bottom population
-
Ruxton G.D. Chaos in a three-species food chain with a lower bound on the bottom population. Ecology 1996, 77:317-319.
-
(1996)
Ecology
, vol.77
, pp. 317-319
-
-
Ruxton, G.D.1
-
11
-
-
0037105942
-
Influence of intraspecific density dependence on a three-species food chain with and without external stochastic disturbances
-
Xu C., Li Z. Influence of intraspecific density dependence on a three-species food chain with and without external stochastic disturbances. Ecol. Model. 2002, 155:71-83.
-
(2002)
Ecol. Model.
, vol.155
, pp. 71-83
-
-
Xu, C.1
Li, Z.2
-
12
-
-
0000899238
-
Uber die Lage der Integralkurven gew onlicher Differentialgleichungen
-
Nagumo M. Uber die Lage der Integralkurven gew onlicher Differentialgleichungen. Proc. Phys. Math. Soc. Japan 1942, 24:551.
-
(1942)
Proc. Phys. Math. Soc. Japan
, vol.24
, pp. 551
-
-
Nagumo, M.1
-
14
-
-
48749138514
-
Persistence in models of three interacting predator-prey populations
-
Freedman H.I., Waltman P. Persistence in models of three interacting predator-prey populations. Math. Biosci. 1984, 68:213-231.
-
(1984)
Math. Biosci.
, vol.68
, pp. 213-231
-
-
Freedman, H.I.1
Waltman, P.2
-
15
-
-
0024790076
-
A mathematical model of facultative mutualism with populations interaction in a food chain
-
Kumar R., Freedman H.I. A mathematical model of facultative mutualism with populations interaction in a food chain. Math. Biosci. 1989, 97:235-261.
-
(1989)
Math. Biosci.
, vol.97
, pp. 235-261
-
-
Kumar, R.1
Freedman, H.I.2
-
17
-
-
0000284152
-
Saturated equilibria, permanence and stability for ecological systems
-
World Scientific, Singapore, L. Gross, T. Hallam, S. Levin (Eds.)
-
Hofbauer J. Saturated equilibria, permanence and stability for ecological systems. Mathematical Ecology Proc. 1988, World Scientific, Singapore. L. Gross, T. Hallam, S. Levin (Eds.).
-
(1988)
Mathematical Ecology Proc.
-
-
Hofbauer, J.1
-
18
-
-
0021960574
-
Permanent coexistence in general models of three interacting species
-
Hutson V., Law R. Permanent coexistence in general models of three interacting species. J. Math. Biol. 1985, 21:289-298.
-
(1985)
J. Math. Biol.
, vol.21
, pp. 289-298
-
-
Hutson, V.1
Law, R.2
-
19
-
-
0030544879
-
A geometric approach to global-stability problems
-
Li M.Y., Muldowney J.S. A geometric approach to global-stability problems. SIAM J. Math. Anal. 1994, 27(4):1070-1083.
-
(1994)
SIAM J. Math. Anal.
, vol.27
, Issue.4
, pp. 1070-1083
-
-
Li, M.Y.1
Muldowney, J.S.2
-
21
-
-
0000825092
-
A criterion for stability of matrices
-
Li M.Y., Wang L. A criterion for stability of matrices. J. Math. Anal. Appl. 1998, 225:249-264.
-
(1998)
J. Math. Anal. Appl.
, vol.225
, pp. 249-264
-
-
Li, M.Y.1
Wang, L.2
-
22
-
-
78649979301
-
Qualitative behavior of three species food chain around inner equilibrium point: spectral analysis
-
Mandal S., Panja M.M., Ray S., Roy S.K. Qualitative behavior of three species food chain around inner equilibrium point: spectral analysis. Nonlinear Anal. Model. Control 2010, 15(4):459-472.
-
(2010)
Nonlinear Anal. Model. Control
, vol.15
, Issue.4
, pp. 459-472
-
-
Mandal, S.1
Panja, M.M.2
Ray, S.3
Roy, S.K.4
|