-
1
-
-
23044491349
-
Clifford modules
-
M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), 3-38.
-
(1964)
Topology
, vol.3
, pp. 3-38
-
-
Atiyah, M.F.1
Bott, R.2
Shapiro, A.3
-
2
-
-
84989221068
-
Spectral asymmetry and Riemannian geometry
-
M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69.
-
(1975)
I, Math. Proc. Cambridge Philos. Soc.
, vol.77
, pp. 43-69
-
-
Atiyah, M.F.1
Patodi, V.K.2
Singer, I.M.3
-
3
-
-
51249187498
-
Index theory for skew-adjoint Fredholm operators
-
M. F. Atiyah and I. M. Singer, Index theory for skew-adjoint Fredholm operators, Inst. Hautes Études Sci. Publ. Math. (1969), 5-26. Available at http://www.numdam.org/item?id=PMIHES1969_37_5_0.
-
(1969)
Inst. Hautes Études Sci. Publ. Math.
, pp. 5-26
-
-
Atiyah, M.F.1
Singer, I.M.2
-
4
-
-
0003246101
-
K-Theory for Operator Algebras
-
Springer-Verlag, New York
-
B. Blackadar, K-Theory for Operator Algebras, Math. Sci. Research Inst. Publ. 5, Springer-Verlag, New York, 1986.
-
(1986)
Math. Sci. Research Inst. Publ.
, vol.5
-
-
Blackadar, B.1
-
5
-
-
84972561504
-
Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes
-
A. Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku Math. J. 13 (1961), 216-240.
-
(1961)
Tôhoku Math. J.
, vol.13
, pp. 216-240
-
-
Borel, A.1
-
6
-
-
0000008593
-
Homogeneous vector bundles
-
R. Bott, Homogeneous vector bundles, Ann. of Math. 66 (1957), 203-248.
-
(1957)
Ann. of Math.
, vol.66
, pp. 203-248
-
-
Bott, R.1
-
7
-
-
0003277239
-
Representations of Compact Lie Groups
-
Springer-Verlag, New York
-
T. Bröcker and T. tom Dieck, Representations of Compact Lie Groups, Grad. Texts in Math. 98, Springer-Verlag, New York, 1995.
-
(1995)
Grad. Texts in Math.
, vol.98
-
-
Bröcker, T.1
Tom Dieck, T.2
-
8
-
-
80051709185
-
Twisted K-theory and TQFT
-
Georg-August-Universität Göttingen: Seminars Winter Term 2004/2005, Universitätsdrucke Göttingen, Göttingen
-
U. Bunke and I. Schröder, Twisted K-theory and TQFT, in Mathematisches Institut, Georg-August-Universität Göttingen: Seminars Winter Term 2004/2005, Universitätsdrucke Göttingen, Göttingen, 2005, pp. 33-80.
-
(2005)
Mathematisches Institut
, vol.98
, pp. 33-80
-
-
Bunke, U.1
Schröder, I.2
-
9
-
-
0000806413
-
Affine Kac-Moody algebras and semi-infinite flag manifolds
-
B. L. Feǐgin and E. V. Frenkel, Affine Kac-Moody algebras and semi-infinite flag manifolds, Comm. Math. Phys. 128 (1990), 161-189.
-
(1990)
Comm. Math. Phys
, vol.128
, pp. 161-189
-
-
Feǐgin, B.L.1
Frenkel, E.V.2
-
10
-
-
0038781141
-
Twisted K-theory and loop groups
-
(Beijing, 2002), Higher Ed. Press, Beijing
-
D. S. Freed, Twisted K-theory and loop groups, in Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), Higher Ed. Press, Beijing, 2002, pp. 419-430.
-
(2002)
Proceedings of the International Congress of Mathematicians
, vol.3
, pp. 419-430
-
-
Freed, D.S.1
-
13
-
-
85164952107
-
Twisted equivariant K-theory with complex coefficients
-
D. S. Freed, M. J. Hopkins, and C. Teleman, Twisted equivariant K-theory with complex coefficients, J. Topol. 1 (2008), 16-44.
-
(2008)
J. Topol.
, vol.1
, pp. 16-44
-
-
Freed, D.S.1
Hopkins, M.J.2
Teleman, C.3
-
14
-
-
84920182737
-
Consistent orientation of moduli spaces
-
Oxford Univ. Press, Oxford
-
D. S. Freed, M. J. Hopkins, and C. Teleman, Consistent orientation of moduli spaces, in The Many Facets of Geometry, Oxford Univ. Press, Oxford, 2010, pp. 395-419.
-
(2010)
The Many Facets of Geometry
, pp. 395-419
-
-
Freed, D.S.1
Hopkins, M.J.2
Teleman, C.3
-
15
-
-
0001452948
-
Semi-infinite cohomology and string theory
-
I. B. Frenkel, H. Garland, and G. J. Zuckerman, Semi-infinite cohomology and string theory, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 8442-8446.
-
(1986)
Proc. Nat. Acad. Sci. U. S. A.
, vol.83
, pp. 8442-8446
-
-
Frenkel, I.B.1
Garland, H.2
Zuckerman, G.J.3
-
16
-
-
0003084609
-
Lie algebra homology and the Macdonald-Kac formulas
-
H. Garland and J. Lepowsky, Lie algebra homology and the Macdonald-Kac formulas, Invent. Math. 34 (1976), 37-76.
-
(1976)
Invent. Math.
, vol.34
, pp. 37-76
-
-
Garland, H.1
Lepowsky, J.2
-
18
-
-
0033573187
-
A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups
-
B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J. 100 (1999), 447-501.
-
(1999)
Duke Math. J.
, vol.100
, pp. 447-501
-
-
Kostant, B.1
-
19
-
-
0012968948
-
A generalization of the Bott-Borel-Weil theorem and Euler number multiplets of representations. Conference Moshé Flato 1999 (Dijon)
-
B. Kostant, A generalization of the Bott-Borel-Weil theorem and Euler number multiplets of representations. Conference Moshé Flato 1999 (Dijon), Lett. Math. Phys. 52 (2000), 61-78.
-
(2000)
Lett. Math. Phys.
, vol.52
, pp. 61-78
-
-
Kostant, B.1
-
20
-
-
0003098983
-
Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras
-
B. Kostant and S. Sternberg, Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras, Ann. Physics 176 (1987), 49-113.
-
(1987)
Ann. Physics
, vol.176
, pp. 49-113
-
-
Kostant, B.1
Sternberg, S.2
-
21
-
-
0000369545
-
Demazure character formula in arbitrary Kac-Moody setting
-
S. Kumar, Demazure character formula in arbitrary Kac-Moody setting, Invent. Math. 89 (1987), 395-423.
-
(1987)
Invent. Math.
, vol.89
, pp. 395-423
-
-
Kumar, S.1
-
22
-
-
11944254510
-
Multiplets of representations and Kostant's Dirac operator for equal rank loop groups
-
G. D. Landweber, Multiplets of representations and Kostant's Dirac operator for equal rank loop groups, Duke Math. J. 110 (2001), 121-160.
-
(2001)
Duke Math. J.
, vol.110
, pp. 121-160
-
-
Landweber, G.D.1
-
23
-
-
0003312633
-
Spin Seometry
-
Princeton Univ. Press, Princeton, NJ
-
H. B. Lawson, Jr. and M.-L. Michelsohn, Spin Seometry, Princeton Math. Ser. 38, Princeton Univ. Press, Princeton, NJ, 1989.
-
(1989)
Princeton Math. Ser.
, vol.38
-
-
Lawson Jr., H.B.1
Michelsohn, M.-L.2
-
24
-
-
0002451244
-
Formules de caractères pour les algèbres de Kac-Moody générales
-
O. Mathieu, Formules de caractères pour les algèbres de Kac-Moody générales, in Astérisque, 159-160, 1988, p. 267.
-
(1988)
Astérisque
, vol.159-160
, pp. 267
-
-
Mathieu, O.1
-
25
-
-
22044432953
-
Gerbes, (twisted) K-theory, and the supersymmetric WZW model
-
de Gruyter, Berlin
-
J. Mickelsson, Gerbes, (twisted) K-theory, and the supersymmetric WZW model, in Infinite Dimensional Groups and Manifolds, IRMA Lect. Math. Theor. Phys. 5, de Gruyter, Berlin, 2004, pp. 93-107.
-
(2004)
Infinite Dimensional Groups and Manifolds, IRMA Lect. Math. Theor. Phys.
, vol.5
, pp. 93-107
-
-
Mickelsson, J.1
-
26
-
-
0003863511
-
-
Oxford Math. Monogr., The Clarendon Press Oxford Univ. Press, New York
-
A. Pressley and G. Segal, Loop Groups, Oxford Math. Monogr., The Clarendon Press Oxford Univ. Press, New York, 1986.
-
(1986)
Loop Groups
-
-
Pressley, A.1
Segal, G.2
-
27
-
-
51649185911
-
The representation ring of a compact Lie group
-
G. Segal, The representation ring of a compact Lie group, Inst. Hautes Études Sci. Publ. Math. (1968), 113-128.
-
(1968)
Inst. Hautes Études Sci. Publ. Math.
, pp. 113-128
-
-
Segal, G.1
-
29
-
-
0032357238
-
Borel-Weil-Bott theory on the moduli stack of G-bundles over a curve
-
C. Teleman, Borel-Weil-Bott theory on the moduli stack of G-bundles over a curve, Invent. Math. 134 (1998), 1-57.
-
(1998)
Invent. Math.
, vol.134
, pp. 1-57
-
-
Teleman, C.1
-
31
-
-
0033478449
-
Positive energy representations of the loop groups of non-simply connected Lie groups
-
V. Toledano Laredo, Positive energy representations of the loop groups of non-simply connected Lie groups, Comm. Math. Phys. 207 (1999), 307-339.
-
(1999)
Comm. Math. Phys.
, vol.207
, pp. 307-339
-
-
Toledano Laredo, V.1
-
32
-
-
3042775757
-
A character formula for representations of loop groups based on non-simply connected Lie groups
-
R. Wendt, A character formula for representations of loop groups based on non-simply connected Lie groups, Math. Z. 247 (2004), 549-580.
-
(2004)
Math. Z.
, vol.247
, pp. 549-580
-
-
Wendt, R.1
|