-
1
-
-
0003633463
-
-
Springer-Verlag, New York, Heidelberg, Berlin
-
J. Palis and W. de Melo, Geometric Theory of Dynamical Systems, An Introduction (Translation from the Portuguese by A.K. Manning), Springer-Verlag, New York, Heidelberg, Berlin, 1982.
-
(1982)
Geometric Theory of Dynamical Systems, An Introduction (Translation from the Portuguese by A.K. Manning)
-
-
Palis, J.1
De Melo, W.2
-
2
-
-
0000598042
-
The bifurcation of homoclinic and periodic orbits from two heteroclinic orbits
-
S.N. Chow, B. Deng, and D. Terman, The bifurcation of homoclinic and periodic orbits from two heteroclinic orbits, SIAM J. Math. Anal. 21 (1990), pp. 179-204.
-
(1990)
SIAM J. Math. Anal.
, vol.21
, pp. 179-204
-
-
Chow, S.N.1
Deng, B.2
Terman, D.3
-
3
-
-
0003546876
-
-
World Scientific, Singapore
-
L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, and L.O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics; Part II, World Scientific, Singapore, 2001.
-
(2001)
Methods of Qualitative Theory in Nonlinear Dynamics; Part II
-
-
Shilnikov, L.P.1
Shilnikov, A.L.2
Turaev, D.V.3
Chua, L.O.4
-
4
-
-
68649084668
-
Snakes ladders and isolas of localised patterns
-
M. Beck, J. Knobloch, D.J.B. Lloyd, B. Sandstede, and T. Wagenknecht, Snakes, ladders, and isolas of localised patterns, SIAM J. Math. Anal. 41 (2009), pp. 936-972.
-
(2009)
SIAM J. Math. Anal.
, vol.41
, pp. 936-972
-
-
Beck, M.1
Knobloch, J.2
Lloyd, D.J.B.3
Sandstede, B.4
Wagenknecht, T.5
-
5
-
-
33744829750
-
Localized states in the generalized Swift-Hohenberg equation
-
Art. No. 056211
-
J. Burke and E. Knobloch, Localized states in the generalized Swift-Hohenberg equation, Phys. Rev. E 73 (2006), Art. No. 056211.
-
(2006)
Phys. Rev. E
, vol.73
-
-
Burke, J.1
Knobloch, E.2
-
6
-
-
0000841505
-
Stable static localized structures in one dimension
-
P. Coullet, C. Riera, and C. Tresser, Stable static localized structures in one dimension, Phys. Rev. Lett. 84 (2000), pp. 3069-3072.
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 3069-3072
-
-
Coullet, P.1
Riera, C.2
Tresser, C.3
-
7
-
-
0346500773
-
Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian-Hopf bifurcation
-
PII S0167278998003091
-
P.D. Woods and A.R. Champneys, Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian Hopf bifurcation, Physica D 129 (1999), pp. 147-170. (Pubitemid 129587501)
-
(1999)
Physica D: Nonlinear Phenomena
, vol.129
, Issue.3-4
, pp. 147-170
-
-
Woods, P.D.1
Champneys, A.R.2
-
8
-
-
19944412544
-
Homoclinic snaking near a heteroclinic cycle in reversible systems
-
DOI 10.1016/j.physd.2005.04.018, PII S0167278905001624
-
J. Knobloch and T. Wagenknecht, Homoclinic snaking near a heteroclinic cycle in reversible systems, Physica D 206 (2005), pp. 82-93. (Pubitemid 40753412)
-
(2005)
Physica D: Nonlinear Phenomena
, vol.206
, Issue.1-2
, pp. 82-93
-
-
Knobloch, J.1
Wagenknecht, T.2
-
9
-
-
56449117106
-
Snaking of multiple homoclinic orbits in reversible systems
-
J. Knobloch and T. Wagenknecht, Snaking of multiple homoclinic orbits in reversible systems, SIAM J. Appl. Dynam. Syst. 7 (2008), pp. 1397-1420.
-
(2008)
SIAM J. Appl. Dynam. Syst.
, vol.7
, pp. 1397-1420
-
-
Knobloch, J.1
Wagenknecht, T.2
-
10
-
-
33747418994
-
Bifurcations of global reinjection orbits near a saddle-node Hopf bifurcation
-
DOI 10.1088/0951-7715/19/9/010, PII S0951771506240027, 010
-
B. Krauskopf and B.E. Oldeman, Bifurcations of global reinjection orbits near a saddle-node Hopf bifurcation, Nonlinearity 19 (2006), pp. 2149-2167. (Pubitemid 44249948)
-
(2006)
Nonlinearity
, vol.19
, Issue.9
, pp. 2149-2167
-
-
Krauskopf, B.1
Oldeman, B.E.2
-
11
-
-
47849115552
-
A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits
-
B. Krauskopf and T. Rieß, A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits, Nonlinearity 21 (2008), pp. 1655-1690.
-
(2008)
Nonlinearity
, vol.21
, pp. 1655-1690
-
-
Krauskopf, B.1
Rieß, T.2
-
12
-
-
80051780539
-
Isolas of 2-pulse solutions in homoclinic snaking scenarios
-
J. Knobloch, D.J.B. Lloyd, B. Sandstede, and T. Wagenknecht, Isolas of 2-pulse solutions in homoclinic snaking scenarios, JDDE 23 (2011), pp. 93-114.
-
(2011)
JDDE
, vol.23
, pp. 93-114
-
-
Knobloch, J.1
Lloyd, D.J.B.2
Sandstede, B.3
Wagenknecht, T.4
-
13
-
-
76149123202
-
Lin's method for heteroclinic chains involving periodic orbits
-
J. Knobloch and T. Rieß, Lin's method for heteroclinic chains involving periodic orbits, Nonlinearity 23 (2010), pp. 23-54.
-
(2010)
Nonlinearity
, vol.23
, pp. 23-54
-
-
Knobloch, J.1
Rieß, T.2
-
14
-
-
27744536022
-
Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit
-
DOI 10.1016/j.jde.2005.03.016, PII S002203960500118X
-
J.D. Rademacher, Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit, J. Diff. Eqns 218 (2005), pp. 390-443. (Pubitemid 41614219)
-
(2005)
Journal of Differential Equations
, vol.218
, Issue.2
, pp. 390-443
-
-
Rademacher, J.D.M.1
-
15
-
-
77952642583
-
Lyapunov-Schmidt reduction for unfolding heteroclinic networks of equilibria and periodic orbits with tangencies
-
J.D. Rademacher, Lyapunov-Schmidt reduction for unfolding heteroclinic networks of equilibria and periodic orbits with tangencies, J. Diff. Eqns. 249 (2010), pp. 305-348.
-
J. Diff. Eqns.
, vol.249
, Issue.2010
, pp. 305-348
-
-
Rademacher, J.D.1
-
16
-
-
58149488792
-
Exponential asymptotics of localised patterns and snaking bifurcation diagrams
-
S.J. Chapman and G. Kozyreff, Exponential asymptotics of localised patterns and snaking bifurcation diagrams, Physica D 238 (2009), pp. 319-354.
-
(2009)
Physica D
, vol.238
, pp. 319-354
-
-
Chapman, S.J.1
Kozyreff, G.2
-
17
-
-
33746376262
-
Asymptotics of large bound states of localised structures
-
Art. No. 044502
-
G. Kozyreff and S.J. Chapman, Asymptotics of large bound states of localised structures, Phys. Rev. Lett. 97 (2006), Art. No. 044502.
-
(2006)
Phys. Rev. Lett.
, vol.97
-
-
Kozyreff, G.1
Chapman, S.J.2
-
18
-
-
76149094233
-
Unfolding a tangent equilibrium-to-periodic heteroclinic cycle
-
A.R. Champneys, V. Kirk, E. Knobloch, B.E. Oldeman, and J.D.M. Rademacher, Unfolding a tangent equilibrium-to-periodic heteroclinic cycle, SIAM J. Appl. Dyn. Syst. 8 (2009), pp. 1261-1304.
-
(2009)
SIAM J. Appl. Dyn. Syst.
, vol.8
, pp. 1261-1304
-
-
Champneys, A.R.1
Kirk, V.2
Knobloch, E.3
Oldeman, B.E.4
Rademacher, J.D.M.5
-
19
-
-
47849112972
-
When Shil'nikov meets Hopf in excitable systems
-
A.R Champneys, V. Kirk, E. Knobloch, B.E. Oldeman, and J. Sneyd, When Shil'nikov meets Hopf in excitable systems, SIAM J. Appl. Dyn. Syst. 6 (2007), pp. 663-693.
-
(2007)
SIAM J. Appl. Dyn. Syst.
, vol.6
, pp. 663-693
-
-
A.R Champneys1
Kirk, V.2
Knobloch, E.3
Oldeman, B.E.4
Sneyd, J.5
-
20
-
-
70349758348
-
Swift-Hohenberg equation with broken reflection symmetry
-
Art. No. 036202
-
J. Burke, S.M. Houghton, and E. Knobloch, Swift-Hohenberg equation with broken reflection symmetry, Phys. Rev. E 80 (2009), Art. No. 036202.
-
(2009)
Phys. Rev. E
, vol.80
-
-
Burke, J.1
Houghton, S.M.2
Knobloch, E.3
-
21
-
-
34250627892
-
Geometric singular perturbation theory for ordinary differential equations
-
N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eqns. 31 (1979), pp. 53-98.
-
(1979)
J. Diff. Eqns.
, vol.31
, pp. 53-98
-
-
Fenichel, N.1
-
22
-
-
0004053060
-
-
Springer-Verlag, New York, Heidelberg, Berlin
-
C.K.R.T. Jones, Geometric Singular Perturbation Theory in Dynamical Systems, Lecture Notes in Mathematics 1609, Springer-Verlag, New York, Heidelberg, Berlin, 1995.
-
(1995)
Geometric Singular Perturbation Theory in Dynamical Systems, Lecture Notes in Mathematics 1609
-
-
C.K.R.T. Jones1
-
23
-
-
0030637321
-
Fast and slow waves in the FitzHugh-Nagumo equation
-
M. Krupa, B. Sandstede, and P. Szmolyan, Fast and slow waves in the FitzHugh-Nagumo equation, J. Diff. Eqns 133 (1997), pp. 49-97. (Pubitemid 127164522)
-
(1997)
Journal of Differential Equations
, vol.133
, Issue.1
, pp. 49-97
-
-
Krupa, M.1
Sandstede, B.2
Szmolyan, P.3
-
24
-
-
0003399571
-
-
Springer-Verlag, New York, Heidelberg, Berlin
-
S.N. Chow and J.K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, Heidelberg, Berlin, 1982.
-
(1982)
Methods of Bifurcation Theory
-
-
Chow, S.N.1
Hale, J.K.2
-
25
-
-
0003546876
-
-
World Scientific, Singapore
-
L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, and L.O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics; Part I, World Scientific, Singapore, 1998.
-
(1998)
Methods of Qualitative Theory in Nonlinear Dynamics; Part I
-
-
Shilnikov, L.P.1
Shilnikov, A.L.2
Turaev, D.V.3
Chua, L.O.4
-
26
-
-
0038194270
-
AUTO-07P: Continuation and bifurcation software for ordinary differential equations
-
Concordia University, Montreal, Available at
-
E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B.E. Oldeman, R.C. Paffenroth, B Sandstede, X.J Wang, and C. Zhang, AUTO-07P: Continuation and bifurcation software for ordinary differential equations, Tech. Rep., Concordia University, Montreal, 2006. Available at http://cmvl.cs. concordia.ca
-
(2006)
Tech. Rep.
-
-
Doedel, E.J.1
Champneys, A.R.2
Fairgrieve, T.F.3
Kuznetsov, Y.A.4
Oldeman, B.E.5
Paffenroth, R.C.6
B Sandstede7
X.J Wang8
Zhang, C.9
-
27
-
-
52149091923
-
Continuation of connecting orbits in 3D-ODES: I Point-to-cycle connections
-
E.J. Doedel, B.W. Kooi, Yu.A. Kuznetsov, and G.A.K. Van Voorn, Continuation of connecting orbits in 3D-ODES: (I) Point-to-cycle connections, Internat. J. Bifur. Chaos Appl. Sci. Eng. 18 (2008), pp. 1889-1903.
-
(2008)
Internat. J. Bifur. Chaos Appl. Sci. Eng.
, vol.18
, pp. 1889-1903
-
-
Doedel, E.J.1
Kooi, B.W.2
Kuznetsov, Yu.A.3
Van Voorn, G.A.K.4
-
28
-
-
80051776471
-
Numerical study of secondary heteroclinic bifurcations near non-reversible homoclinic snaking
-
25-28 May, Dresden
-
T. Rieß, Numerical study of secondary heteroclinic bifurcations near non-reversible homoclinic snaking, Proceedings of the 8th AIMS Conference, 25-28 May, Dresden, 2010.
-
(2010)
Proceedings of the 8th AIMS Conference
-
-
Rieß, T.1
|