메뉴 건너뛰기




Volumn , Issue , 2009, Pages 295-335

Statistical indices for computational and data driven class discovery in microarray data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 80051699322     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (6)

References (34)
  • 1
    • 85056433348 scopus 로고    scopus 로고
    • Supplementary material web site
    • Supplementary material web site. http://www.math.unipa.it/~raffaele/suppMaterial/chapterDM/.
  • 2
    • 85056428385 scopus 로고    scopus 로고
    • Validation Work Bench: Valworkbench web page
    • Validation Work Bench: Valworkbench web page. http://www.math. unipa.it/~raffaele/valworkbench/.
  • 3
    • 0000642069 scopus 로고
    • Replicating cluster analysis: Method, consistency, and validity
    • J. N. Breckenridge. Replicating cluster analysis: Method, consistency, and validity. Multivariate Behavioral Research, 24(2):147-161, 1989.
    • (1989) Multivariate Behavioral Research , vol.24 , Issue.2 , pp. 147-161
    • Breckenridge, J.N.1
  • 4
    • 0037342510 scopus 로고    scopus 로고
    • Comparisons and validation of statistical clustering techniques for microarray gene expression data
    • S. Datta and S. Datta. Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics, 19:459-466, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 459-466
    • Datta, S.1    Datta, S.2
  • 6
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • S. Dudoit and J. Fridlyand. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology, 3, 2002.
    • (2002) Genome Biology , pp. 3
    • Dudoit, S.1    Fridlyand, J.2
  • 7
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy of a clustering solution
    • S. Dudoit and J. Fridlyand. Bagging to improve the accuracy of a clustering solution. Bioinformatics, 19:1090-1099, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 10
    • 0011086555 scopus 로고
    • Clustering algorithms and cluster validation. In P. Dirschedl and R. Ostermann, editors
    • Physica-Verlag, Heidelberg, Germany
    • A. D. Gordon. Clustering algorithms and cluster validation. In P. Dirschedl and R. Ostermann, editors. Computational Statistics. Physica-Verlag, Heidelberg, Germany, 497-512, 1994.
    • (1994) Computational Statistics. , pp. 497-512
    • Gordon, A.D.1
  • 11
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • J. Handl, J. Knowles, and D. B. Kell. Computational cluster validation in post-genomic data analysis. Bioinformatics, 21(15):3201-3212, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 12
    • 0034659448 scopus 로고    scopus 로고
    • An algorithm for clustering of cDNAs for gene expression analysis using short oligonucleotide fingerprints
    • E. Hartuv, A. Schmitt, J. Lange, S. Meier-Ewert, H. Lehrach, and R. Shamir. An algorithm for clustering of cDNAs for gene expression analysis using short oligonucleotide fingerprints. Genomics, 66:249-256, 2000.
    • (2000) Genomics , vol.66 , pp. 249-256
    • Hartuv, E.1    Schmitt, A.2    Lange, J.3    Meier-Ewert, S.4    Lehrach, H.5    Shamir, R.6
  • 14
    • 84871651918 scopus 로고    scopus 로고
    • Laboratory of DNA Information Analysis Human Genome Center, Institute of Medical Science, University of Tokyo
    • M. J. L. De Hoon, S. Imoto, and S. Miyano. The C Clustering Library for cDNA Microarray Data. Laboratory of DNA Information Analysis Human Genome Center, Institute of Medical Science, University of Tokyo, 2007.
    • (2007) The C Clustering Library for cDNA Microarray Data.
    • De Hoon, M.J.L.1    Imoto, S.2    Miyano, S.3
  • 18
    • 0035979259 scopus 로고    scopus 로고
    • Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments
    • M. K. Kerr and G. A. Churchill. Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments. Proceedings of the National Academy of Sciences USA, 98:8961-8965, 2001.
    • (2001) Proceedings of the National Academy of Sciences USA , vol.98 , pp. 8961-8965
    • Kerr, M.K.1    Churchill, G.A.2
  • 19
    • 0023905024 scopus 로고
    • A criterion for determining the number of groups in a dataset using sum of squares clustering
    • W. Krzanowski and Y. Lai. A criterion for determining the number of groups in a dataset using sum of squares clustering. Biometrics, 44:23-34, 1985.
    • (1985) Biometrics , vol.44 , pp. 23-34
    • Krzanowski, W.1    Lai, Y.2
  • 20
    • 0029795578 scopus 로고    scopus 로고
    • Over and underrepresentation of short DNA words in Herphesvirus genomes
    • M-Y. Leung, G. M. Marsch, and T. P. Speed. Over and underrepresentation of short DNA words in Herphesvirus genomes. Journal of Computational Biology, 3:345-360, 1996.
    • (1996) Journal of Computational Biology , vol.3 , pp. 345-360
    • Leung, M.-Y.1    Marsch, G.M.2    Speed, T.P.3
  • 21
    • 0015113659 scopus 로고
    • Practical problems in a method of cluster analysis
    • F. H. C. Marriot. Practical problems in a method of cluster analysis. Biometrics, 27:501-514, 1971.
    • (1971) Biometrics , vol.27 , pp. 501-514
    • Marriot, F.H.C.1
  • 22
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • G. W. Milligan and M. C. Cooper. An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50:159-179, 1985.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 23
    • 84948872101 scopus 로고
    • A study of the comparability of external criteria for hierarchical cluster analysis
    • G. W. Milligan and M. C. Cooper. A study of the comparability of external criteria for hierarchical cluster analysis. Multivariate Behavioral Research, 21:441-458, 1986.
    • (1986) Multivariate Behavioral Research , vol.21 , pp. 441-458
    • Milligan, G.W.1    Cooper, M.C.2
  • 24
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering:A resampling-based method for class discovery and visualization of gene expression microarray data
    • S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus clustering:A resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning, 52:91-118, 2003.
    • (2003) Machine Learning , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 25
    • 34247875975 scopus 로고    scopus 로고
    • Evaluation of gene-expression clustering via mutual information distance measure
    • I. Priness, O. Maimon, and I. Ben-Gal. Evaluation of gene-expression clustering via mutual information distance measure. BMC Bioinformatics, 8:111, 2007.
    • (2007) BMC Bioinformatics , vol.8 , pp. 111
    • Priness, I.1    Maimon, O.2    Ben-Gal, I.3
  • 26
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66:846-850, 1971.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 28
    • 0141498446 scopus 로고    scopus 로고
    • Algorithmic approaches to clustering gene expression data. In T. Jiang, T. Smith, Y. Xu, and M. Q. Zhang, editors
    • MIT Press, Cambridge, MA
    • R. Shamir and R. Sharan. Algorithmic approaches to clustering gene expression data. In T. Jiang, T. Smith, Y. Xu, and M. Q. Zhang, editors. Current Topics in Computational Biology. MIT Press, Cambridge, MA, 120-161, 2003.
    • (2003) Current Topics in Computational Biology. , pp. 120-161
    • Shamir, R.1    Sharan, R.2
  • 32
    • 36749055295 scopus 로고    scopus 로고
    • Determining the number of clusters with the weighted gap statistics
    • M. Yan and K. Ye. Determining the number of clusters with the weighted gap statistics. Biometrics, 63:1031-1037, 2007.
    • (2007) Biometrics , vol.63 , pp. 1031-1037
    • Yan, M.1    Ye, K.2
  • 34
    • 0035024021 scopus 로고    scopus 로고
    • Validating clustering for gene expression data
    • K. Y. Yeung, D. R. Haynor, and W. L. Ruzzo. Validating clustering for gene expression data. Bioinformatics, 17:309-318, 2001.
    • (2001) Bioinformatics , vol.17 , pp. 309-318
    • Yeung, K.Y.1    Haynor, D.R.2    Ruzzo, W.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.