메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1181-1184

A general Bayesian algorithm for visual object tracking based on sparse features

Author keywords

Generalized Hough Transform; Nonretinotopic Representation; Probabilistic Graphical Models; Visual Object Tracking

Indexed keywords

BAYESIAN ALGORITHMS; GENERALIZED HOUGH TRANSFORM; HUMAN VISUAL CORTEX; INTERNAL STRUCTURE; MISSED DETECTIONS; MOVING OBJECTS; NONRETINOTOPIC REPRESENTATION; OBSERVATION MODEL; PROBABILISTIC GRAPHICAL MODELS; RECURSIVE ALGORITHMS; SPARSE IMAGES; TIME SLICE; VISUAL OBJECT TRACKING;

EID: 80051657476     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2011.5946620     Document Type: Conference Paper
Times cited : (3)

References (4)
  • 2
    • 77949425558 scopus 로고    scopus 로고
    • The geometry of visual perception: Retinotopic and nonretinotopic representations in the human visual system
    • march
    • H. Ogmen and M.H. Herzog, "The geometry of visual perception: Retinotopic and nonretinotopic representations in the human visual system," Proceedings of the IEEE, vol. 98, no. 3, pp. 479 -492, march 2010.
    • (2010) Proceedings of the IEEE , vol.98 , Issue.3 , pp. 479-492
    • Ogmen, H.1    Herzog, M.H.2
  • 4
    • 0019397313 scopus 로고
    • Generalizing the hough transform to detect arbitrary shapes
    • D. H. Ballard, "Generalizing the hough transform to detect arbitrary shapes," Pattern Recognition, vol. 13, no. 2, pp. 111-122, 1981.
    • (1981) Pattern Recognition , vol.13 , Issue.2 , pp. 111-122
    • Ballard, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.