메뉴 건너뛰기




Volumn , Issue , 2011, Pages 4492-4495

Exemplar-based sparse representation phone identification features

Author keywords

Sparse representations; speech recognition

Indexed keywords

BROADCAST NEWS; CLASSIFICATION TECHNIQUE; FEATURE REPRESENTATION; K-NEAREST NEIGHBORS; LARGE VOCABULARY; PHONETIC CLASSIFICATION; PHONETIC ERRORS; PHONETIC RECOGNITION; RELATIVE REDUCTION; SPARSE REPRESENTATION; TEST SAMPLES; WORD ERROR RATE;

EID: 80051637164     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2011.5947352     Document Type: Conference Paper
Times cited : (11)

References (7)
  • 3
    • 70349213445 scopus 로고    scopus 로고
    • Lattice-Based Optimization of Sequence Classification Criteria for Neural-Network Acoustic Modeling
    • B. Kingsbury, "Lattice-Based Optimization of Sequence Classification Criteria for Neural-Network Acoustic Modeling," in Proc. ICASSP, 2009.
    • Proc. ICASSP, 2009
    • Kingsbury, B.1
  • 6
    • 34547551709 scopus 로고    scopus 로고
    • Use of Differential Cepstra as Acoustic Features in Hidden Trajectory Modeling for Phonetic Recognition
    • L. Deng and D. Yu, "Use of Differential Cepstra as Acoustic Features in Hidden Trajectory Modeling for Phonetic Recognition," in Proc. ICASSP, 2007.
    • Proc. ICASSP, 2007
    • Deng, L.1    Yu, D.2
  • 7
    • 85128407852 scopus 로고    scopus 로고
    • Heterogeneous Measurements and Multiple Classifiers for Speech Recognition
    • A. Halberstat and J. Glass, "Heterogeneous Measurements and Multiple Classifiers for Speech Recognition," in Proc. ICSLP, 1998.
    • Proc. ICSLP, 1998
    • Halberstat, A.1    Glass, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.