메뉴 건너뛰기




Volumn , Issue , 2011, Pages 5028-5031

Dirichlet mixture models of neural net posteriors for HMM-based speech recognition

Author keywords

Dirichlet distribution; HMMs; neural network posteriors

Indexed keywords

CONVENTIONAL APPROACH; DIRICHLET DISTRIBUTIONS; DIRICHLET MIXTURE MODEL; EXPONENTIAL FAMILY; GAUSSIAN MIXTURE MODELS; HMMS; NEURAL NET; NOVEL TECHNIQUES; PHONEME RECOGNITION; POSTERIOR PROBABILITY; PROBABILITY VECTOR;

EID: 80051614108     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2011.5947486     Document Type: Conference Paper
Times cited : (3)

References (11)
  • 7
    • 0001953676 scopus 로고
    • Maximum likelihood theory for incomplete data from an exponential family
    • R. Sundberg, "Maximum likelihood theory for incomplete data from an exponential family," Scandinavian Journal of Statistics, vol. 1, no. 2, pp. 49-58, 1974.
    • (1974) Scandinavian Journal of Statistics , vol.1 , Issue.2 , pp. 49-58
    • Sundberg, R.1
  • 10
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • M.D. Richard and R.P. Lippmann, "Neural network classifiers estimate Bayesian a posteriori probabilities," Neural computation, vol. 3, no. 4, pp. 461-483, 1991.
    • (1991) Neural Computation , vol.3 , Issue.4 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.