메뉴 건너뛰기




Volumn 11, Issue 9, 2011, Pages 2102-2107

Single-sensor incipient fault detection

Author keywords

Kernel principal component analysis (KPCA); sensor fault diagnosis; wavelet threshold filter

Indexed keywords

DETECTION METHODS; FAULT DATA; INCIPIENT FAULT DETECTION; INCIPIENT FAULTS; KERNEL PRINCIPAL COMPONENT ANALYSIS; PROCESS NOISE; SENSOR FAULT DIAGNOSIS; WAVELET THRESHOLD FILTER;

EID: 80051540094     PISSN: 1530437X     EISSN: None     Source Type: Journal    
DOI: 10.1109/JSEN.2010.2093879     Document Type: Article
Times cited : (46)

References (22)
  • 1
    • 0006699306 scopus 로고
    • Detection of instrument malfunction by process operator
    • S. N. Anyakora and F. P. Lees, "Detection of instrument malfunction by process operator," Chem. Eng., vol. 264, pp. 304-309, 1972.
    • (1972) Chem. Eng. , vol.264 , pp. 304-309
    • Anyakora, S.N.1    Lees, F.P.2
  • 2
    • 80051478817 scopus 로고    scopus 로고
    • Improved residual test method for dual sensor soft fault detection
    • Apr.
    • Z. S. Wang, D. B. Wang, and Z. Y. Cai, "Improved residual test method for dual sensor soft fault detection," J. Transduc. Technol., vol. 23, pp. 47-49, Apr. 2004.
    • (2004) J. Transduc. Technol. , vol.23 , pp. 47-49
    • Wang, Z.S.1    Wang, D.B.2    Cai, Z.Y.3
  • 3
    • 0031632531 scopus 로고    scopus 로고
    • Local sensor fault detection using Bayesian decision theory
    • P. G. O'Reilly, "Local sensor fault detection using Bayesian decision theory," in Proc. UKACC Int. Conf. CONTROL, 1998, pp. 247-251.
    • (1998) Proc. UKACC Int. Conf. CONTROL , pp. 247-251
    • O'Reilly, P.G.1
  • 4
    • 0032179517 scopus 로고    scopus 로고
    • Detection of sensor decalibration using the asymptotic local approach
    • Oct.
    • P. G. O'Reilly, "Detection of sensor decalibration using the asymptotic local approach," Electron. Lett., vol. 34, pp. 2022-20231, Oct. 1998.
    • (1998) Electron. Lett. , vol.34 , pp. 2022-20231
    • O'Reilly, P.G.1
  • 5
    • 30244517051 scopus 로고    scopus 로고
    • A model-based validation of a Dox sensor
    • Sep.
    • D. W. Clarke and P. M. A. Fraher, "A model-based validation of a Dox sensor," Control Eng. Practice, vol. 4, pp. 1313-1320, Sep. 1996.
    • (1996) Control Eng. Practice , vol.4 , pp. 1313-1320
    • Clarke, D.W.1    Fraher, P.M.A.2
  • 7
    • 0034544166 scopus 로고    scopus 로고
    • Fuzzy rules for automated sensor self-validation and confidence measure
    • Chicago IL
    • F. Jeff and A. Mohamed, "Fuzzy rules for automated sensor self-validation and confidence measure," in Proc. Amer. Control Conf., Chicago, IL, 2000, pp. 2912-2916.
    • (2000) Proc. Amer. Control Conf. , pp. 2912-2916
    • Jeff, F.1    Mohamed, A.2
  • 9
    • 80051520122 scopus 로고    scopus 로고
    • Advances in coriolis mass flow metering technology
    • M. P. Henry and R. Mercado, "Advances in coriolis mass flow metering technology," ATP Int., pp. 254-261, 2005.
    • (2005) ATP Int. , pp. 254-261
    • Henry, M.P.1    Mercado, R.2
  • 11
    • 0033284338 scopus 로고    scopus 로고
    • Detection and identification of faulty sensors with maximized sensitivity
    • Q. S. Joe and W. H. Li, "Detection and identification of faulty sensors with maximized sensitivity," in Proc. Amer. Control Conf., 1999, pp. 613-617.
    • (1999) Proc. Amer. Control Conf. , pp. 613-617
    • Joe, Q.S.1    Li, W.H.2
  • 12
    • 0024700097 scopus 로고
    • Theory for multiresolution signal decomposition: The wavelet representation
    • Jul.
    • S. A. Mallat, "Theory for multiresolution signal decomposition: The wavelet representation," IEEE Pattern Anal. Mach. Intell., vol. 11, pp. 674-693, Jul. 1989.
    • (1989) IEEE Pattern Anal. Mach. Intell. , vol.11 , pp. 674-693
    • Mallat, S.A.1
  • 13
    • 84898785264 scopus 로고
    • Characterization of signals form multiscale edges
    • Jul.
    • S. Mallat, "Characterization of signals form multiscale edges," IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, pp. 710-732, Jul. 1992.
    • (1992) IEEE Trans. Pattern Anal. Mach. Intell. , vol.14 , pp. 710-732
    • Mallat, S.1
  • 14
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • Mar.
    • D. L. Donoho, "De-noising by soft-thresholding," IEEE Trans. Inf. Theory, vol. 41, pp. 613-627, Mar. 1995.
    • (1995) IEEE Trans. Inf. Theory , vol.41 , pp. 613-627
    • Donoho, D.L.1
  • 15
    • 56449094231 scopus 로고    scopus 로고
    • The Kalman type recursive state estimator with a finite-step correlated process noise
    • S. Enbin, Z. Yunmin, and Z. S. Yang, "The Kalman type recursive state estimator with a finite-step correlated process noise," in Proc. IEEE Int. Conf. Autom. Logist., 2008, vol. 10, pp. 196-200.
    • (2008) Proc. IEEE Int. Conf. Autom. Logist. , vol.10 , pp. 196-200
    • Enbin, S.1    Yunmin, Z.2    Yang, Z.S.3
  • 16
    • 34548132094 scopus 로고    scopus 로고
    • Filter design for steady-state tracking of maneuvering targets with LFM waveforms
    • Mar.
    • V. Jain and W. D. Blair, "Filter design for steady-state tracking of maneuvering targets with LFM waveforms," in Proc. IEEE 39th Southeast. Symp. Syst. Theory, Mar. 2007, pp. 314-319.
    • (2007) Proc. IEEE 39th Southeast. Symp. Syst. Theory , pp. 314-319
    • Jain, V.1    Blair, W.D.2
  • 17
    • 0038492786 scopus 로고    scopus 로고
    • Using the coherency function in measurement based small-signal analysis of large power systems
    • Feb.
    • J. F. Haure and D. J. Trudnowski, "Using the coherency function in measurement based small-signal analysis of large power systems," in Proc. Power Eng. Soc. Summer Meeting, Feb. 2000, pp. 809-811.
    • (2000) Proc. Power Eng. Soc. Summer Meeting , pp. 809-811
    • Haure, J.F.1    Trudnowski, D.J.2
  • 19
    • 0030197651 scopus 로고    scopus 로고
    • Identifying MIMO Wiener systems using subspace model identification methods
    • DOI 10.1016/0165-1684(96)00056-4, PII S0165168496000564
    • D. Westwick and M. Verhaegen, "Identifying MIMO Wiener systems using subspace model identification methods," Signal Process., pp. 235-258, Jul. 1996. (Pubitemid 126370646)
    • (1996) Signal Processing , vol.52 , Issue.2 , pp. 235-258
    • Westwick, D.1    Verhaegen, M.2
  • 20
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • Jan.
    • J. M. Lee, C. K. Yoo, and S. W. Choi, "Nonlinear process monitoring using kernel principal component analysis," Chem. Eng. Sci., pp. 223-233, Jan. 2004.
    • (2004) Chem. Eng. Sci. , pp. 223-233
    • Lee, J.M.1    Yoo, C.K.2    Choi, S.W.3
  • 21
    • 34548287979 scopus 로고    scopus 로고
    • Evolving kernel principal component analysis for fault diagnosis
    • R. Sun, F. Tsung, and L. Qu, "Evolving kernel principal component analysis for fault diagnosis," Comput. Ind. Eng., pp. 1-11, 2007.
    • (2007) Comput. Ind. Eng. , pp. 1-11
    • Sun, R.1    Tsung, F.2    Qu, L.3
  • 22
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • B. Scholkopf and A. J. Smola, "Nonlinear component analysis as a kernel eigenvalue problem," Neural Comput., pp. 1299-1319, Dec. 1998. (Pubitemid 128463674)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.