메뉴 건너뛰기




Volumn 36, Issue 2, 2011, Pages 99-115

Feature selection for support vector machines with RBF kernel

Author keywords

Feature selection; Information gain; RBF kernel; Recursive Feature Elimination; SVM RFE

Indexed keywords

BLACK BOXES; FEATURE SELECTION ALGORITHM; INFORMATION GAIN; K-NN CLASSIFIER; LINEAR KERNEL; MACLAURIN SERIES; MAPPING FUNCTIONS; MICROARRAY DATA SETS; RANKING CRITERION; RBF KERNELS; RECURSIVE FEATURE ELIMINATION; SUPPORT VECTOR MACHINE RECURSIVE FEATURE ELIMINATIONS; SVM-RFE; WEIGHT VECTOR;

EID: 80051522580     PISSN: 02692821     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10462-011-9205-2     Document Type: Article
Times cited : (77)

References (40)
  • 1
    • 33845802629 scopus 로고    scopus 로고
    • Stochastic local search for the Feature Set problem, with applications to microarray data
    • DOI 10.1016/j.amc.2006.05.128, PII S0096300306006503
    • A Albrecht 2006 Stochastic local search for the feature set problem, with applications to microarray data Appl Math Comput 183 2 1148 1164 1110.68370 10.1016/j.amc.2006.05.128 (Pubitemid 46014662)
    • (2006) Applied Mathematics and Computation , vol.183 , Issue.2 , pp. 1148-1164
    • Albrecht, A.A.1
  • 2
    • 3543106611 scopus 로고    scopus 로고
    • Classification of Gene Expression Profile Using Combinatory Method of Evolutionary Computation and Machine Learning
    • DOI 10.1023/B:GENP.0000023685.83861.69
    • S Ando H Iba 2004 Classification of gene expression profile using combinatory method of evolutionary computation and machine learning Genet Program Evol Mach 5 1573 7632 10.1023/B:GENP.0000023685.83861.69 (Pubitemid 38497846)
    • (2004) Genetic Programming and Evolvable Machines , vol.5 , Issue.2 , pp. 145-156
    • Ando, S.1    Iba, H.2
  • 3
    • 34248330399 scopus 로고    scopus 로고
    • A blocking strategy to improve gene selection for classification of gene expression data
    • DOI 10.1109/TCBB.2007.1014
    • G Bontempi 2007 A blocking strategy to improve gene selection for classification of gene expression data IEEE/ACM Trans Comput Biology Bioinform 4 293 300 10.1109/TCBB.2007.1014 (Pubitemid 46733332)
    • (2007) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.4 , Issue.2 , pp. 293-300
    • Bontempi, G.1
  • 5
    • 27144489164 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • DOI 10.1023/A:1009715923555
    • C Burges 1998 A tutorial on support vector machines for pattern recognition Data Mining Knowl Discovery 2 121 167 10.1023/A:1009715923555 (Pubitemid 128126769)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-168
    • Burges, C.J.C.1
  • 9
    • 17644384367 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • DOI 10.1142/S0219720005001004, PII S0219720005001004
    • C Ding H Peng 2005 Minimum redundancy feature selection from microarray gene expression data J Bioinform Comput Biology 3 2 185 205 10.1142/ S0219720005001004 (Pubitemid 40561382)
    • (2005) Journal of Bioinformatics and Computational Biology , vol.3 , Issue.2 , pp. 185-205
    • Ding, C.1    Peng, H.2
  • 10
    • 33947324308 scopus 로고    scopus 로고
    • Improving the performance of SVM-RFE to select genes in microarray data
    • DOI 10.1186/1471-2105-7-S2-S12
    • Ding Y, Wilkins D(2006)Improving the performance of SVM-RFE to select genes in microarray data. BMC Bioinform 7 (Suppl 2):S12. doi: 10.1186/1471-2105-7-S2-S12 (Pubitemid 46442967)
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 2
    • Ding, Y.1    Wilkins, D.2
  • 14
    • 26644466101 scopus 로고    scopus 로고
    • Multiple SVM-RFE for gene selection in cancer classification with expression data
    • DOI 10.1109/TNB.2005.853657
    • K Duan J Rajapakse H Wang F Azuaje 2005 Multiple SVM-RFE for gene selection in cancer classification with expression data IEEE Trans Nanobiosci 4 3 228 234 10.1109/TNB.2005.853657 (Pubitemid 41441412)
    • (2005) IEEE Transactions on Nanobioscience , vol.4 , Issue.3 , pp. 228-233
    • Duan, K.-B.1    Rajapakse, J.C.2    Wang, H.3    Azuaje, F.4
  • 15
    • 67349242422 scopus 로고    scopus 로고
    • A filter model for feature subset selection based on genetic algorithm
    • 10.1016/j.knosys.2009.02.006
    • M Elalami 2009 A filter model for feature subset selection based on genetic algorithm Knowledge-Based Syst 22 356 362 10.1016/j.knosys.2009.02.006
    • (2009) Knowledge-Based Syst , vol.22 , pp. 356-362
    • Elalami, M.1
  • 16
    • 60849097547 scopus 로고    scopus 로고
    • Normalized mutual information feature selection
    • 10.1109/TNN.2008.2005601
    • P Estevez M Tesmer C Perez J Zurada 2009 Normalized mutual information feature selection IEEE Trans Neural Netw 20 189 201 10.1109/TNN.2008.2005601
    • (2009) IEEE Trans Neural Netw , vol.20 , pp. 189-201
    • Estevez, P.1    Tesmer, M.2    Perez, C.3    Zurada, J.4
  • 18
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • 10.1126/science.286.5439.531
    • T Golub, et al. 1999 Molecular classification of cancer: class discovery and class prediction by gene expression monitoring Science 286 531 537 10.1126/science.286.5439.531
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.1
  • 19
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • W Guyon V Barnhill 2002 Gene selection for cancer classification using support vector machines Mach Learn 46 389 422 0998.68111 10.1023/A:1012487302797 (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 20
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • 1102.68556 10.1162/153244303322753616
    • I Guyon A Elisseeff 2003 An introduction to variable and feature selection J Mach Learn Res 3 1157 1182 1102.68556 10.1162/153244303322753616
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 21
    • 33747067136 scopus 로고    scopus 로고
    • Interpretable gene expression classifier with an accurate and compact fuzzy rule base for microarray data analysis
    • DOI 10.1016/j.biosystems.2006.01.002, PII S0303264706000037
    • S Ho C Hsieh H Chen H Huang 2006 Interpretable gene expression classifier with an accurate and compact fuzzy rule base for microarray data analysis BioSystems 85 165 176 10.1016/j.biosystems.2006.01.002 (Pubitemid 44209361)
    • (2006) BioSystems , vol.85 , Issue.3 , pp. 165-176
    • Ho, S.-Y.1    Hsieh, C.-H.2    Chen, H.-M.3    Huang, H.-L.4
  • 22
    • 34447343762 scopus 로고    scopus 로고
    • A hybrid genetic algorithm for feature selection wrapper based on mutual information
    • DOI 10.1016/j.patrec.2007.05.011, PII S0167865507001754
    • J Huang Y Cai X Xu 2007 A hybrid genetic algorithm for feature selection wrapper based on mutual information Pattern Recogn Lett 28 1825 1844 10.1016/j.patrec.2007.05.011 (Pubitemid 47058633)
    • (2007) Pattern Recognition Letters , vol.28 , Issue.13 , pp. 1825-1844
    • Huang, J.1    Cai, Y.2    Xu, X.3
  • 23
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R Kohavi G John 1997 Wrappers for feature subset selection Artif Intell 97 1-2 273 324 0904.68143 10.1016/S0004-3702(97)00043-X (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 25
    • 23744432473 scopus 로고    scopus 로고
    • Information gain and divergence-based feature selection for machine learning-based text categorization
    • DOI 10.1016/j.ipm.2004.08.006, PII S0306457304000962
    • C Lee G Lee 2006 Information gain and divergence-based feature selection for machine learning-based text categorization Inform Process Manage 42 1 155 165 10.1016/j.ipm.2004.08.006 (Pubitemid 41119082)
    • (2006) Information Processing and Management , vol.42 , Issue.1 SPEC. ISSUE , pp. 155-165
    • Lee, C.1    Lee, G.G.2
  • 26
    • 27544442586 scopus 로고    scopus 로고
    • Analysis of recursive gene selection approaches from microarray data
    • DOI 10.1093/bioinformatics/bti618
    • F Li Y Yang 2005 Analysis of recursive gene selection approaches from microarray data Bioinformatics 21 19 3741 3747 10.1093/bioinformatics/bti618 (Pubitemid 41535522)
    • (2005) Bioinformatics , vol.21 , Issue.19 , pp. 3741-3747
    • Li, F.1    Yang, Y.2
  • 28
    • 33749672435 scopus 로고    scopus 로고
    • Gene subset selection in kernel-induced feature space
    • DOI 10.1016/j.patrec.2006.04.017, PII S0167865506001413
    • S Niijima S Kuhara 2006 Gene subset selection in kernel-induced feature space Pattern Recogn Lett 27 1884 1892 10.1016/j.patrec.2006.04.017 (Pubitemid 44556804)
    • (2006) Pattern Recognition Letters , vol.27 , Issue.16 , pp. 1884-1892
    • Niijima, S.1    Kuhara, S.2
  • 33
    • 34247622378 scopus 로고    scopus 로고
    • Iterative RELIEF for feature weighting: Algorithms, theories, and applications
    • DOI 10.1109/TPAMI.2007.1093
    • Sun Y (2007) Iterative RELIEF for feature weighting: algorithms, theories, and applications. In: IEEE transactions on pattern analysis and machine intelligence, vol. 29(6):1035-1051 (Pubitemid 46667414)
    • (2007) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.29 , Issue.6 , pp. 1035-1051
    • Sun, Y.1
  • 34
    • 85030413794 scopus 로고    scopus 로고
    • Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis
    • DOI 10.1109/TCBB.2007.1028
    • Y Tang Y Zhang Z Huang 2007 Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis IEEE/ACM Trans Comput Biol Bioinform 4 3 365 381 10.1109/TCBB.2007.70224 (Pubitemid 47274713)
    • (2007) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.4 , Issue.3 , pp. 365-381
    • Tang, Y.1    Zhang, Y.-Q.2    Huang, Z.3
  • 37
    • 34250773981 scopus 로고    scopus 로고
    • Neuro-fuzzy ensemble approach for microarray cancer gene expression data analysis
    • DOI 10.1109/ISEFS.2006.251144, 4016708, Proceedings of the 2006 International Symposium on Evolving Fuzzy Systems, EFS'06
    • Wang Z, Palade V, Xu Y (2006) Neuro-fuzzy ensemble approach for microarray cancer gene expression data analysis. In: Proceedings of the second international symposium on evolving fuzzy system (EFS'06), IEEE Computational Intelligence Society 2006, pp 241-246 (Pubitemid 46948116)
    • (2006) Proceedings of the 2006 International Symposium on Evolving Fuzzy Systems, EFS'06 , pp. 241-246
    • Zhenyu, W.1    Palade, V.2    Yong, X.3
  • 38
    • 60249093947 scopus 로고    scopus 로고
    • Class dependent feature scaling method using naive Bayes classifier for text data mining
    • 10.1016/j.patrec.2008.11.013
    • E Youn M Jeong 2009 Class dependent feature scaling method using naive Bayes classifier for text data mining Pattern Recogn Lett 30 477 485 10.1016/j.patrec.2008.11.013
    • (2009) Pattern Recogn Lett , vol.30 , pp. 477-485
    • Youn, E.1    Jeong, M.2
  • 40
    • 76749163762 scopus 로고    scopus 로고
    • MIClique: An algorithm to identify differentially coexpressed disease gene subset from microarray data
    • Article No.: 42524, doi: 10.1155/2009/642524
    • Zhang H, Song X, Wang H, Zhang X (2009) MIClique: an algorithm to identify differentially coexpressed disease gene subset from microarray data. J Biomed Biotechnol 2009. Article No.: 42524, doi: 10.1155/2009/642524
    • (2009) J Biomed Biotechnol 2009
    • Zhang, H.1    Song, X.2    Wang, H.3    Zhang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.