메뉴 건너뛰기




Volumn 29, Issue 2, 2011, Pages

Improving recommender systems by incorporating social contextual information

Author keywords

Collaborative filtering; Matrix factorization; Recommender systems; Social network; Tags

Indexed keywords

COLLABORATIVE FILTERING; COMPLEXITY ANALYSIS; CONTEXTUAL INFORMATION; DATA SPARSITY; DATA SPARSITY PROBLEMS; EXPONENTIAL GROWTH; FACTOR ANALYSIS; LARGE DATASETS; MATRIX FACTORIZATIONS; ONLINE USERS; PREDICTION ACCURACY; RESEARCH CHALLENGES; SOCIAL NETWORK; SOCIAL NETWORKS; STATE-OF-THE-ART APPROACH; TAGS; USER-ITEM MATRIX; WEB APPLICATION;

EID: 80051490270     PISSN: 10468188     EISSN: 15582868     Source Type: Journal    
DOI: 10.1145/1961209.1961212     Document Type: Article
Times cited : (200)

References (49)
  • 3
    • 36849079891 scopus 로고    scopus 로고
    • Modeling relationships at multiple scales to improve accuracy of large recommender systems
    • DOI 10.1145/1281192.1281206, KDD-2007: Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • BELL, R., KOREN, Y., AND VOLINSKY, C. 2007. Modeling relationships at multiple scales to improve accuracy of large recommender systems. In Proceedings of the International SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'07). 95-104. (Pubitemid 350229196)
    • (2007) Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 95-104
    • Bell, R.1    Koren, Y.2    Volinsky, C.3
  • 8
    • 35348914807 scopus 로고    scopus 로고
    • Google news personalization: Scalable online collaborative filtering
    • DOI 10.1145/1242572.1242610, 16th International World Wide Web Conference, WWW2007
    • DAS, A. S., DATAR, M., GARG, A., AND RAJARAM, S. 2007. Google news personalization: Scalable online collaborative filtering. In Proceedings of the 16th International Conference on World Wide Web (WWW'07). 271-280. (Pubitemid 47582257)
    • (2007) 16th International World Wide Web Conference, WWW2007 , pp. 271-280
    • Das, A.S.1    Datar, M.2    Garg, A.3    Rajaram, S.4
  • 9
    • 3042821101 scopus 로고    scopus 로고
    • Item-Based top-n recommendation
    • DESHPANDE, M. AND KARYPIS, G. 2004. Item-Based top-n recommendation. ACM Trans. Inf. Syst. 22, 1, 143-177.
    • (2004) ACM Trans. Inf. Syst. , vol.22 , Issue.1 , pp. 143-177
    • Deshpande, M.1    Karypis, G.2
  • 10
    • 29144522149 scopus 로고    scopus 로고
    • Probabilistic sparse matrix factorization
    • Department of Computer Science, University of Toronto
    • DUECK, D. AND FREY, B. 2004. Probabilistic sparse matrix factorization. Tech. rep. PSI TR 2004-023. Department of Computer Science, University of Toronto.
    • (2004) Tech. Rep. PSI TR 2004-023
    • Dueck, D.1    Frey, B.2
  • 11
    • 32344447271 scopus 로고    scopus 로고
    • Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering
    • DOI 10.1145/1081870.1081879, KDD-2005 - Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • GAO, B., LIU, T.-Y., ZHENG, X., CHENG, Q.-S., AND MA, W.-Y. 2005. Consistent bipartite graph copartitioning for star-structured high-order heterogeneous data co-clustering. In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD'05). 41-50. (Pubitemid 43218266)
    • (2005) Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 41-50
    • Gao, B.1    Liu, T.-Y.2    Zheng, X.3    Cheng, Q.-S.4    Ma, W.-Y.5
  • 17
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • HOFMANN, T. 2004. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst. 22, 1, 89-115.
    • (2004) ACM Trans. Inf. Syst. , vol.22 , Issue.1 , pp. 89-115
    • Hofmann, T.1
  • 18
    • 3042819722 scopus 로고    scopus 로고
    • Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering
    • HUANG, Z., CHEN, H., AND ZENG, D. 2004. Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering. ACM Trans. Inf. Syst. 22, 1, 116-142.
    • (2004) ACM Trans. Inf. Syst. , vol.22 , Issue.1 , pp. 116-142
    • Huang, Z.1    Chen, H.2    Zeng, D.3
  • 24
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • LEE, D. D. AND SEUNG, H. S. 1999. Learning the parts of objects by non-negative matrix factorization. Nature 401, 6755, 788-791.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 26
    • 0037252945 scopus 로고    scopus 로고
    • Amazon. Com recommendations: Item-to-Item collaborative filtering
    • LINDEN, G., SMITH, B., AND YORK, J. 2003. Amazon. com recommendations: Item-to-Item collaborative filtering. IEEE Internet Comput., 76-80.
    • (2003) IEEE Internet Comput. , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 30
    • 84898970398 scopus 로고    scopus 로고
    • Modeling user rating profiles for collaborative filtering
    • S. Thrun, L. Saul, and B. Schölkopf Eds., MIT Press, Cambridge, MA
    • MARLIN, B. 2004. Modeling user rating profiles for collaborative filtering. In Advances in Neural Information Processing Systems, Vol. 16, S. Thrun, L. Saul, and B. Schölkopf Eds., MIT Press, Cambridge, MA.
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Marlin, B.1
  • 49
    • 85162059520 scopus 로고    scopus 로고
    • Predictive matrix-variate t models
    • J. Platt and S. Roweis Eds., MIT Press, Cambridge, MA
    • ZHU, S., YU, K., AND GONG, Y. 2008. Predictive matrix-variate t models. In Advances in Neural Information Processing Systems, Vol. 20, J. Platt and S. Roweis Eds., MIT Press, Cambridge, MA, 1721-1728.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 1721-1728
    • Zhu, S.1    Yu, K.2    Gong, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.