메뉴 건너뛰기




Volumn 28, Issue 2, 2011, Pages 473-489

Fuzzy emerging patterns for classifying hard domains

Author keywords

Emerging patterns; Fuzzy emerging patterns; Supervised classification

Indexed keywords

CLASSIFICATION (OF INFORMATION);

EID: 80051469691     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-010-0324-x     Document Type: Article
Times cited : (28)

References (34)
  • 1
    • 0005747131 scopus 로고
    • Solution to geological problems with support of recognition programs
    • Bongard MN (1963) Solution to geological problems with support of recognition programs. Sov Geologia 6: 33-50.
    • (1963) Sov Geologia , vol.6 , pp. 33-50
    • Bongard, M.N.1
  • 2
    • 0001843413 scopus 로고
    • Pattern recognition: general description
    • International Center for Science and High Technology, Trieste, Italy
    • Keilis-Borok A, Soloviov A (1991) Pattern recognition: general description. In: Workshop in non-linear dynamics and earthquake prediction, International Center for Science and High Technology, Trieste, Italy, pp 1-14.
    • (1991) Workshop in non-linear dynamics and earthquake prediction , pp. 1-14
    • Keilis-Borok, A.1    Soloviov, A.2
  • 3
    • 0021774963 scopus 로고
    • Revealing conceptual structure in data by inductive inference
    • D. Michie, J. E. Hayes, and H. H. Pao (Eds.), New York,: Ellis Horwood Ltd
    • Michalski RS, Stepp R (1982) Revealing conceptual structure in data by inductive inference. In: Michie D, Hayes JE, Pao HH (eds) Machine Intelligence, vol. 10. Ellis Horwood Ltd, New York,pp 173-196.
    • (1982) Machine Intelligence , vol.10 , pp. 173-196
    • Michalski, R.S.1    Stepp, R.2
  • 5
    • 33947224036 scopus 로고    scopus 로고
    • Patterns based classifiers
    • Ramamohanarao K, Fan H (2007) Patterns based classifiers. World Wide Web 10(1): 71-83.
    • (2007) World Wide Web , vol.10 , Issue.1 , pp. 71-83
    • Ramamohanarao, K.1    Fan, H.2
  • 8
    • 77953535155 scopus 로고    scopus 로고
    • Statapriori: An efficient algorithm for searching statistically significant association rules
    • doi: 10. 1007/s10115-009-0229-8
    • Hämälïnen W (2009) Statapriori: an efficient algorithm for searching statistically significant association rules. Knowl Inf Syst. doi: 10. 1007/s10115-009-0229-8.
    • (2009) Knowl Inf Syst
    • Hämälïnen, W.1
  • 10
    • 33646390384 scopus 로고    scopus 로고
    • Fast discovery and the generalization of strong jumping emerging patterns for building compact and accurate classifiers
    • Fan H, Ramamohanarao K (2006) Fast discovery and the generalization of strong jumping emerging patterns for building compact and accurate classifiers. IEEE Trans Knowl Data Eng 18(6): 721-737.
    • (2006) IEEE Trans Knowl Data Eng , vol.18 , Issue.6 , pp. 721-737
    • Fan, H.1    Ramamohanarao, K.2
  • 11
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh LA (1965) Fuzzy sets. Inf Control 8: 338-353.
    • (1965) Inf Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 12
    • 77952094602 scopus 로고    scopus 로고
    • Mining fuzzy association rules from uncertain data
    • doi: 10. 1007/s10115-009-0223-1
    • Weng C-H, Chen Y-L (2009) Mining fuzzy association rules from uncertain data. Knowl Inf Syst. doi: 10. 1007/s10115-009-0223-1.
    • (2009) Knowl Inf Syst
    • Weng, C.-H.1    Chen, Y.-L.2
  • 13
    • 0001170207 scopus 로고    scopus 로고
    • A study about the inclusion of linguistic hedges in a fuzzy rule learning algorithm
    • González A, Pérez R (1999) A study about the inclusion of linguistic hedges in a fuzzy rule learning algorithm. Int J uncertain fuzziness knowl based syst 7(3): 257-266.
    • (1999) Int J Uncertain Fuzziness Knowl Based Syst , vol.7 , Issue.3 , pp. 257-266
    • González, A.1    Pérez, R.2
  • 15
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • Fayyad U, Irani K (1993) Multi-interval discretization of continuous-valued attributes for classification learning. In: 13th Int'l Joint Conf Artif Intell (IJCAI), pp 1022-1029.
    • (1993) 13th Int'l Joint Conf Artif Intell , pp. 1022-1029
    • Fayyad, U.1    Irani, K.2
  • 17
    • 0003408496 scopus 로고    scopus 로고
    • Uci repository of machine learning databases
    • University of California at Irvine, Department of Information and Computer Science
    • Merz C, Murphy P (1998) Uci repository of machine learning databases. Technical Report, University of California at Irvine, Department of Information and Computer Science.
    • (1998) Technical Report
    • Merz, C.1    Murphy, P.2
  • 19
    • 0000868331 scopus 로고
    • Induction of fuzzy decision trees
    • Yuan Y, Shaw M (1995) Induction of fuzzy decision trees. Fuzzy Sets Syst 69: 125-139.
    • (1995) Fuzzy Sets Syst , vol.69 , pp. 125-139
    • Yuan, Y.1    Shaw, M.2
  • 20
    • 0000377020 scopus 로고    scopus 로고
    • On the optimization of fuzzy decision trees
    • Wang XZ, Chen B, Qian G, Ye F (2000) On the optimization of fuzzy decision trees. Fuzzy Sets Syst 112: 117-125.
    • (2000) Fuzzy Sets Syst , vol.112 , pp. 117-125
    • Wang, X.Z.1    Chen, B.2    Qian, G.3    Ye, F.4
  • 22
    • 56749184574 scopus 로고    scopus 로고
    • An algorithm for generating fuzzy decision tree with trapezoid fuzzy number-value attributes
    • ICWAPR 08, vol. 1, Hong Kong, China
    • Huang D-M (2008) An algorithm for generating fuzzy decision tree with trapezoid fuzzy number-value attributes. In: International conference on wavelet analysis and pattern recognition, ICWAPR 08, vol. 1, Hong Kong, China, pp 41-45.
    • (2008) International conference on wavelet analysis and pattern recognition , pp. 41-45
    • Huang, D.-M.1
  • 23
    • 0035361059 scopus 로고    scopus 로고
    • Look-ahead based fuzzy decision tree induction
    • Dong M, Kothari R (2001) Look-ahead based fuzzy decision tree induction. IEEE Trans Fuzzy Syst 9(3): 461-468.
    • (2001) IEEE Trans Fuzzy Syst , vol.9 , Issue.3 , pp. 461-468
    • Dong, M.1    Kothari, R.2
  • 26
    • 6344247314 scopus 로고    scopus 로고
    • A bayesian approach to use emerging patterns for classification
    • Adelaide, Australia,Australian Computer Society, Inc
    • Fan H, Ramamohanarao K (2003) A bayesian approach to use emerging patterns for classification. In: Proceedings of the 14th Australasian database conference-Volume 17, Adelaide, Australia, pp 39-48, Australian Computer Society, Inc.
    • (2003) Proceedings of the 14th Australasian database conference-Volume 17 , pp. 39-48
    • Fan, H.1    Ramamohanarao, K.2
  • 28
    • 14644422971 scopus 로고    scopus 로고
    • Combining pattern classifiers
    • Wiley-Interscience, Hoboken
    • Kuncheva LI. Combining pattern classifiers. Methods and algorithms. Wiley-Interscience, Hoboken.
    • Methods and algorithms
    • Kuncheva, L.I.1
  • 29
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8): 832-844.
    • (1998) IEEE Trans Pattern Anal Mach Intell , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 31
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3): 273-297.
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 33
    • 59649112625 scopus 로고    scopus 로고
    • Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms
    • Alcalá-Fdez J, Alcalá R, Gacto MJ, Herrera F (2009) Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms. Fuzzy Sets Syst 160(7): 905-921.
    • (2009) Fuzzy Sets Syst , vol.160 , Issue.7 , pp. 905-921
    • Alcalá-Fdez, J.1    Alcalá, R.2    Gacto, M.J.3    Herrera, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.