-
1
-
-
50149096917
-
Genetic fuzzy systems: Taxonomy, current research trends and prospects
-
F. Herrera, "Genetic fuzzy systems: taxonomy, current research trends and prospects," Evolutionary Intelligence, vol. 1, pp. 27-46, 2008.
-
(2008)
Evolutionary Intelligence
, vol.1
, pp. 27-46
-
-
Herrera, F.1
-
2
-
-
84870512588
-
Multiobjective genetic fuzzy systems
-
C.L Mumford and L.C. Jain, Ed. Berlin: Springer
-
H. Ishibuchi, and Y. Nojima, "Multiobjective genetic fuzzy systems," In: Computational Intelligence, vol.1, C.L Mumford and L.C. Jain, Ed. Berlin: Springer, 2009, pp 131-173.
-
(2009)
Computational Intelligence
, vol.1
, pp. 131-173
-
-
Ishibuchi, H.1
Nojima, Y.2
-
3
-
-
71549145661
-
Looking for a good fuzzy system interpretability index: An experimental approach
-
J. M. Alonso, L. Magdalena, and G. González-Rodríguez, "Looking for a good fuzzy system interpretability index: an experimental approach," Int. J. Approx. Reason., vol. 51, no. 1, pp. 115-134, 2009.
-
(2009)
Int. J. Approx. Reason.
, vol.51
, Issue.1
, pp. 115-134
-
-
Alonso, J.M.1
Magdalena, L.2
González-Rodríguez, G.3
-
4
-
-
52949088628
-
Low-level interpretability and high-level interpretability: A unified view of data-driven interpretable fuzzy system modelling
-
S. M. Zhou, and J. Q. Gan, "Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling," Fuzzy Sets and Systems, vol. 159, pp. 3091-3131, 2008.
-
(2008)
Fuzzy Sets and Systems
, vol.159
, pp. 3091-3131
-
-
Zhou, S.M.1
Gan, J.Q.2
-
5
-
-
0346781550
-
Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
-
H. Ishibuchi, and T. Yamamoto, "Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining," Fuzzy Sets and Systems, vol. 141, pp. 59-88, 2004.
-
(2004)
Fuzzy Sets and Systems
, vol.141
, pp. 59-88
-
-
Ishibuchi, H.1
Yamamoto, T.2
-
6
-
-
33751186914
-
Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
-
H. Ishibuchi, and Y. Nojima, "Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning," Int. J. Approx. Reason. vol. 44, no. 1, pp. 4-31, 2007.
-
(2007)
Int. J. Approx. Reason.
, vol.44
, Issue.1
, pp. 4-31
-
-
Ishibuchi, H.1
Nojima, Y.2
-
7
-
-
34249908139
-
A Pareto-based multi-objective evolutionary approach to the identification of mamdani fuzzy systems
-
M. Cococcioni, P. Ducange, B. Lazzerini, and F. Marcelloni, "A Pareto-based multi-objective evolutionary approach to the identification of mamdani fuzzy systems," Soft Computing, vol. 11, no. 11, pp. 1013-1031, 2007.
-
(2007)
Soft Computing
, vol.11
, Issue.11
, pp. 1013-1031
-
-
Cococcioni, M.1
Ducange, P.2
Lazzerini, B.3
Marcelloni, F.4
-
8
-
-
70350057609
-
A multi-objective evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy rule-based systems
-
R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, and F. Marcelloni, "A multi-objective evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy rule-based systems," IEEE Trans. Fuzzy. Syst., vol. 17, no. 5, pp 1106-1122, 2009.
-
(2009)
IEEE Trans. Fuzzy. Syst.
, vol.17
, Issue.5
, pp. 1106-1122
-
-
Alcalá, R.1
Ducange, P.2
Herrera, F.3
Lazzerini, B.4
Marcelloni, F.5
-
9
-
-
67649126200
-
Learning concurrently partition granularities and rule bases of mamdani fuzzy systems in a multi-objective evolutionary framework
-
M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, "Learning concurrently partition granularities and rule bases of mamdani fuzzy systems in a multi-objective evolutionary framework," Int. J. Approx. Reason., vol. 50, n. 7, pp. 1066-1080, 2009.
-
(2009)
Int. J. Approx. Reason.
, vol.50
, Issue.7
, pp. 1066-1080
-
-
Antonelli, M.1
Ducange, P.2
Lazzerini, B.3
Marcelloni, F.4
-
10
-
-
35348831258
-
A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems
-
R. Alcalá, M.J. Gacto, F. Herrera, and J. Alcalá-Fdez, "A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems," Int. J. Uncertain. Fuzz., vol. 15, n. 5, 2007, pp. 539-557.
-
(2007)
Int. J. Uncertain. Fuzz.
, vol.15
, Issue.5
, pp. 539-557
-
-
Alcalá, R.1
Gacto, M.J.2
Herrera, F.3
Alcalá-Fdez, J.4
-
11
-
-
58049200709
-
Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems
-
M.J. Gacto, R. Alcalá, and F. Herrera, "Adaptation and application of multi-objective evolutionary algorithms for rule reduction and parameter tuning of fuzzy rule-based systems," Soft Computing, vol. 13, n. 5, pp. 419-436, 2009.
-
(2009)
Soft Computing
, vol.13
, Issue.5
, pp. 419-436
-
-
Gacto, M.J.1
Alcalá, R.2
Herrera, F.3
-
12
-
-
80051529201
-
Multi-objective evolutionary learning of granularity, membership function parameters and rules of Mamdani fuzzy systems
-
M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, "Multi-objective evolutionary learning of granularity, membership function parameters and rules of Mamdani fuzzy systems," Evolutionary Intelligence, vol. 2, no. 1-2, pp. 21-37, 2009.
-
(2009)
Evolutionary Intelligence
, vol.2
, Issue.1-2
, pp. 21-37
-
-
Antonelli, M.1
Ducange, P.2
Lazzerini, B.3
Marcelloni, F.4
-
13
-
-
77952875468
-
Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets
-
P. Ducange, B. Lazzerini, and F. Marcelloni, "Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets," Soft Computing, vol. 14, n. 10, pp. 713-728, 2010.
-
(2010)
Soft Computing
, vol.14
, Issue.10
, pp. 713-728
-
-
Ducange, P.1
Lazzerini, B.2
Marcelloni, F.3
-
14
-
-
42549087712
-
Automatic tuning of a fuzzy visual system using evolutionary algorithms: Single-objective vs. multiobjective approaches
-
R. Muñoz-Salinas, E. Aguirre, O. Cordón, M. Garcia-Silvente, "Automatic tuning of a fuzzy visual system using evolutionary algorithms: single-objective vs. multiobjective approaches," IEEE Transactions on Fuzzy Systems, vol.16, no.2, pp. 485-501, 2008.
-
(2008)
IEEE Transactions on Fuzzy Systems
, vol.16
, Issue.2
, pp. 485-501
-
-
Muñoz-Salinas, R.1
Aguirre, E.2
Cordón, O.3
Garcia-Silvente, M.4
-
15
-
-
58049217458
-
Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index
-
A. Botta, B. Lazzerini, F. Marcelloni, and D. Stefanescu, "Context adaptation of fuzzy systems through a multi-objective evolutionary approach based on a novel interpretability index," Soft Computing, vol. 13, n. 5, pp. 437-449, 2009.
-
(2009)
Soft Computing
, vol.13
, Issue.5
, pp. 437-449
-
-
Botta, A.1
Lazzerini, B.2
Marcelloni, F.3
Stefanescu, D.4
-
16
-
-
77953111519
-
Integration of an index to preserve the semantic interpretability in the multi-objective evolutionary rule selection and tuning of linguistic fuzzy systems
-
M. J. Gacto, R. Alcala, and F. Herrera, "Integration of an index to preserve the semantic interpretability in the multi-objective evolutionary rule selection and tuning of linguistic fuzzy systems," IEEE Trans. Fuzzy. Syst. , vol. 18, n. 3, pp. 515-531, 2010.
-
(2010)
IEEE Trans. Fuzzy. Syst.
, vol.18
, Issue.3
, pp. 515-531
-
-
Gacto, M.J.1
Alcala, R.2
Herrera, F.3
-
17
-
-
81155126099
-
Learning knowledge bases of multi-objective evolutionary fuzzy systems by simultaneously optimizing accuracy, complexity and partition integrity
-
in press
-
M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, Learning knowledge bases of multi-objective evolutionary fuzzy systems by simultaneously optimizing accuracy, complexity and partition integrity, Soft Computing, in press.
-
Soft Computing
-
-
Antonelli, M.1
Ducange, P.2
Lazzerini, B.3
Marcelloni, F.4
-
18
-
-
76849113747
-
A dynamically constrained multiobjective genetic fuzzy system for regression problems
-
P. Pulkkinen and H. Koivisto, "A dynamically constrained multiobjective genetic fuzzy system for regression problems," IEEE Trans. Fuzzy. Syst., vol. 18, no. 1, pp. 161-177, 2010.
-
(2010)
IEEE Trans. Fuzzy. Syst.
, vol.18
, Issue.1
, pp. 161-177
-
-
Pulkkinen, P.1
Koivisto, H.2
-
19
-
-
0026943536
-
Generating fuzzy rules by learning from examples
-
L.X Wang, and J.M. Mendel, "Generating fuzzy rules by learning from examples," IEEE Trans. Syst. Man. Cybern., vol. 22, no. 6, pp. 1414-1427, 1992.
-
(1992)
IEEE Trans. Syst. Man. Cybern.
, vol.22
, Issue.6
, pp. 1414-1427
-
-
Wang, L.X.1
Mendel, J.M.2
-
20
-
-
0014534297
-
A new approach to clustering
-
E. H. Ruspini, "A new approach to clustering," Information Control vol. 15, no. 1, pp. 22-32, 1969.
-
(1969)
Information Control
, vol.15
, Issue.1
, pp. 22-32
-
-
Ruspini, E.H.1
-
21
-
-
0034199912
-
Approximating the non dominated front using the Pareto archived evolution strategy
-
J.D. Knowles, D.W. Corne, "Approximating the non dominated front using the Pareto archived evolution strategy," Evolutionary Computation, vol. 8, no. 2, pp. 149-172, 2000.
-
(2000)
Evolutionary Computation
, vol.8
, Issue.2
, pp. 149-172
-
-
Knowles, J.D.1
Corne, D.W.2
-
22
-
-
84941871856
-
The Kolmogorov-Smirnov test for goodness of fit
-
F.J. Massey FJ, "The Kolmogorov-Smirnov test for goodness of fit," Journal of the American Statistical Association", vol. 46, no. 253, pp. 68-78, 1951.
-
(1951)
Journal of the American Statistical Association
, vol.46
, Issue.253
, pp. 68-78
-
-
Massey Fj, F.J.1
|