메뉴 건너뛰기




Volumn 28, Issue 2, 2011, Pages 395-421

On ontology-driven document clustering using core semantic features

Author keywords

Clustering; Dimensionality reduction; Information gain; Ontology; Semantic features

Indexed keywords

CLUSTER ANALYSIS; DIMENSIONALITY REDUCTION; INFORMATION RETRIEVAL; SEMANTICS;

EID: 79961208617     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-010-0370-4     Document Type: Article
Times cited : (92)

References (47)
  • 1
    • 71149108475 scopus 로고    scopus 로고
    • Incorporating domain knowledge into topic modeling via dirichlet forest priors
    • Andrzejewski D, Zhu X, Craven M (2009) Incorporating domain knowledge into topic modeling via dirichlet forest priors. ICML 25-32.
    • (2009) ICML , pp. 25-32
    • Andrzejewski, D.1    Zhu, X.2    Craven, M.3
  • 3
    • 36448954984 scopus 로고    scopus 로고
    • Clustering short texts using Wikipedia
    • Banerjee S, Ramanathan K, Gupta A (2007) Clustering short texts using Wikipedia. SIGIR 787-788.
    • (2007) SIGIR , pp. 787-788
    • Banerjee, S.1    Ramanathan, K.2    Gupta, A.3
  • 4
    • 2542567719 scopus 로고    scopus 로고
    • Semi-supervised clustering by seeding
    • Basu S, Banerjee A, Mooney RJ (2002) Semi-supervised clustering by seeding. ICML 19-26.
    • (2002) ICML , pp. 19-26
    • Basu, S.1    Banerjee, A.2    Mooney, R.J.3
  • 5
    • 84957866817 scopus 로고    scopus 로고
    • Knowledge-based approaches to query expansion in information retrieval
    • Bodner RC, Song F(1996) Knowledge-based approaches to query expansion in information retrieval. Adv Artif Intell 146-158.
    • (1996) Adv Artif Intell , pp. 146-158
    • Bodner, R.C.1    Song, F.2
  • 8
    • 70349232813 scopus 로고    scopus 로고
    • Combining concept hierarchies and statistical topic models
    • Chemudugunta C, Smyth P, Steyvers M (2008) Combining concept hierarchies and statistical topic models. CIKM 1469-1470.
    • (2008) CIKM , pp. 1469-1470
    • Chemudugunta, C.1    Smyth, P.2    Steyvers, M.3
  • 9
    • 77952375075 scopus 로고    scopus 로고
    • Information-theoretic co-clustering
    • Dhillon I, Mallela S, Modha D (2003) Information-theoretic co-clustering. KDD 89-98.
    • (2003) KDD , pp. 89-98
    • Dhillon, I.1    Mallela, S.2    Modha, D.3
  • 11
    • 72949118503 scopus 로고    scopus 로고
    • Combining statistics and semantics via ensemble model for document clustering
    • Fodeh SJ, Punch W, Tan PN (2009) Combining statistics and semantics via ensemble model for document clustering. SAC 1446-1450.
    • (2009) SAC , pp. 1446-1450
    • Fodeh, S.J.1    Punch, W.2    Tan, P.N.3
  • 12
    • 33750719969 scopus 로고    scopus 로고
    • Overcoming the brittleness bottleneck using Wikipedia: enhancing text categorization with encyclopedic knowledge
    • Gabrilovich E, Markovitch S (2006) Overcoming the brittleness bottleneck using Wikipedia: enhancing text categorization with encyclopedic knowledge. NCAI 21: 1301-1306.
    • (2006) Ncai , vol.21 , pp. 1301-1306
    • Gabrilovich, E.1    Markovitch, S.2
  • 13
    • 84880915872 scopus 로고    scopus 로고
    • Computing semantic relatedness using Wikipedia-based explicit semantic analysis
    • Gabrilovich E, Markovitch S (2007) Computing semantic relatedness using Wikipedia-based explicit semantic analysis. IJCAI 1606-1611.
    • (2007) IJCAI , pp. 1606-1611
    • Gabrilovich, E.1    Markovitch, S.2
  • 15
    • 57349199725 scopus 로고    scopus 로고
    • Enhancing text clustering by leveraging Wikipedia semantics
    • Hu J, Fang L, Cao Y (2008) Enhancing text clustering by leveraging Wikipedia semantics. SIGIR 179-186.
    • (2008) SIGIR , pp. 179-186
    • Hu, J.1    Fang, L.2    Cao, Y.3
  • 16
    • 74549114844 scopus 로고    scopus 로고
    • Exploiting internal and external semantics for the clustering of short texts using world knowledge
    • Hu X, Sun N, Zhang C, Chua TS (2009) Exploiting internal and external semantics for the clustering of short texts using world knowledge. CIKM 919-928.
    • (2009) CIKM , pp. 919-928
    • Hu, X.1    Sun, N.2    Zhang, C.3    Chua, T.S.4
  • 20
    • 57149092639 scopus 로고    scopus 로고
    • Finding cohesive clusters for analyzing knowledge communities
    • Kandylas V, Upham SP, Ungar LH (2009) Finding cohesive clusters for analyzing knowledge communities. Knowl Inf Syst 17: 335-354.
    • (2009) Knowl Inf Syst , vol.17 , pp. 335-354
    • Kandylas, V.1    Upham, S.P.2    Ungar, L.H.3
  • 21
    • 85142688646 scopus 로고
    • NewsWeeder: learning to filter netnews
    • Lang K (1995) NewsWeeder: learning to filter netnews. ICML 331-339.
    • (1995) ICML , pp. 331-339
    • Lang, K.1
  • 22
    • 0002862737 scopus 로고    scopus 로고
    • Fast and effective text mining using linear-time document clustering
    • Larsen B, Aone C (1999) Fast and effective text mining using linear-time document clustering. KDD 16-22.
    • (1999) KDD , pp. 16-22
    • Larsen, B.1    Aone, C.2
  • 23
    • 33750261014 scopus 로고    scopus 로고
    • Reuters-21578 text categorization test collection
    • Lewis D (1997) Reuters-21578 text categorization test collection. AT & T Labs Research.
    • (1997) AT & T Labs Research
    • Lewis, D.1
  • 24
    • 0005180705 scopus 로고    scopus 로고
    • An information-theoretic definition of similarity
    • Lin D (1998) An information-theoretic definition of similarity. ICML 1: 296-304.
    • (1998) Icml , vol.1 , pp. 296-304
    • Lin, D.1
  • 27
    • 79961206995 scopus 로고    scopus 로고
    • LSI vs. WordNet ontology in dimension reduction and information retrieval
    • Moravec P, Kolovrat M, Snasel V (2004) LSI vs. WordNet ontology in dimension reduction and information retrieval. DATESO 288-294.
    • (2004) DATESO , pp. 288-294
    • Moravec, P.1    Kolovrat, M.2    Snasel, V.3
  • 29
    • 35548973432 scopus 로고    scopus 로고
    • A new unsupervised method for Document Clustering by using WordNet Lexical and Conceptual Relations
    • Recupero D (2007) A new unsupervised method for Document Clustering by using WordNet Lexical and Conceptual Relations. SIGIR 10: 563-579.
    • (2007) Sigir , vol.10 , pp. 563-579
    • Recupero, D.1
  • 32
    • 0033699174 scopus 로고    scopus 로고
    • Support vector machines based on a semantic kernel for text categorization
    • Siolas G, d'Alche Buc F (2004) Support vector machines based on a semantic kernel for text categorization. IJCNN'00 5: 205-209.
    • (2004) Ijcnn'00 , vol.5 , pp. 205-209
    • Siolas, G.1    D'Alche Buc, F.2
  • 33
    • 0002096830 scopus 로고    scopus 로고
    • Document clustering using word clusters via the information bottleneck method
    • Slonim N, Tishby N (2000) Document clustering using word clusters via the information bottleneck method. SIGIR 208-215.
    • (2000) SIGIR , pp. 208-215
    • Slonim, N.1    Tishby, N.2
  • 36
    • 67650535274 scopus 로고    scopus 로고
    • Combining statistics and semantics for word and document clustering
    • Termier A, Rousset MC, Sebag M (2001) Combining statistics and semantics for word and document clustering. IJCAI 1: 49-54.
    • (2001) Ijcai , vol.1 , pp. 49-54
    • Termier, A.1    Rousset, M.C.2    Sebag, M.3
  • 38
    • 0027718887 scopus 로고
    • Using WordNet to disambiguate word senses for text retrieval
    • Vorhees E (1993) Using WordNet to disambiguate word senses for text retrieval. SIGIR 171-180.
    • (1993) SIGIR , pp. 171-180
    • Vorhees, E.1
  • 39
    • 49749144410 scopus 로고    scopus 로고
    • Improving text classification by using encyclopedia knowledge
    • Wang P, Hu J, Zeng HJ et al (2007) Improving text classification by using encyclopedia knowledge. ICDM 332-341.
    • (2007) ICDM , pp. 332-341
    • Wang, P.1    Hu, J.2    Zeng, H.J.3
  • 40
    • 65449130494 scopus 로고    scopus 로고
    • Building semantic kernels for text classification using Wikipedia
    • Wang P, Domeniconi C (2008) Building semantic kernels for text classification using Wikipedia. KDD 713-721.
    • (2008) KDD , pp. 713-721
    • Wang, P.1    Domeniconi, C.2
  • 41
    • 33749593913 scopus 로고    scopus 로고
    • Document clustering with semantic analysis
    • Wang Y, Hodges J (2006) Document clustering with semantic analysis. HICSS 3: 54c-54c.
    • (2006) HICSS , vol.3
    • Wang, Y.1    Hodges, J.2
  • 42
    • 84858613793 scopus 로고    scopus 로고
    • Wikipedia: http://wikipedia. edu.
    • Wikipedia
  • 43
    • 79961210156 scopus 로고    scopus 로고
    • WordNet: http://wordnet. princeton. edu.
    • WordNet
  • 44
    • 85146676791 scopus 로고
    • Semantics and lexical selection
    • Wu Z, Palmer M Verb (1994) Semantics and lexical selection. MACL 133-138.
    • (1994) MACL , pp. 133-138
    • Wu, Z.1    Palmer, M.V.2
  • 45
    • 67349254647 scopus 로고    scopus 로고
    • Characterizing pattern preserving clustering
    • Xiong H, Steinbach M, Ruslim A et al (2009) Characterizing pattern preserving clustering. Knowl Inf Syst 19: 133-138.
    • (2009) Knowl Inf Syst , vol.19 , pp. 133-138
    • Xiong, H.1    Steinbach, M.2    Ruslim, A.3
  • 46
    • 33749552175 scopus 로고    scopus 로고
    • Integration of semantic-based bipartite graph representation and mutual refinement strategy for biomedical literature clustering
    • Yoo I, Hu X, Song I (2006) Integration of semantic-based bipartite graph representation and mutual refinement strategy for biomedical literature clustering. KDD 791-796.
    • (2006) KDD , pp. 791-796
    • Yoo, I.1    Hu, X.2    Song, I.3
  • 47
    • 24944501423 scopus 로고    scopus 로고
    • Generative model-based document clustering: a comparative study
    • Zhong S, Ghosh J (2005) Generative model-based document clustering: a comparative study. Knowl Inf Syst 8: 374-384.
    • (2005) Knowl Inf Syst , vol.8 , pp. 374-384
    • Zhong, S.1    Ghosh, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.