메뉴 건너뛰기




Volumn 28, Issue 2, 2011, Pages 311-331

Discovering frequent behaviors: Time is an essential element of the context

Author keywords

Itemsets; Periods; Time aware

Indexed keywords

INFORMATION SYSTEMS;

EID: 79961207270     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-010-0361-5     Document Type: Article
Times cited : (23)

References (34)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • Washington
    • Agrawal R, Imielinski T, Swami AN (1993) Mining association rules between sets of items in large databases. In: SIGMOD, Washington, pp 207-216.
    • (1993) SIGMOD , pp. 207-216
    • Agrawal, R.1    Imielinski, T.2    Swami, A.N.3
  • 4
    • 49849086901 scopus 로고    scopus 로고
    • Mining frequent itemsets in a stream
    • Calders T, Dexters N, Goethals B (2007) Mining frequent itemsets in a stream. In: ICDM, pp 83-92.
    • (2007) ICDM , pp. 83-92
    • Calders, T.1    Dexters, N.2    Goethals, B.3
  • 8
    • 33749322733 scopus 로고    scopus 로고
    • Catch the moment: maintaining closed frequent itemsets over a data stream sliding window
    • Chi Y, Wang H, Yu PS, Muntz RR (2006) Catch the moment: maintaining closed frequent itemsets over a data stream sliding window. Knowl Inf Syst 10(3): 265-294.
    • (2006) Knowl Inf Syst , vol.10 , Issue.3 , pp. 265-294
    • Chi, Y.1    Wang, H.2    Yu, P.S.3    Muntz, R.R.4
  • 11
    • 79961210575 scopus 로고    scopus 로고
    • Duncan A (2010) Super bowl xxxv fun facts. [Online], http://advertising. about. com/od/superbowlcoverage/a/xxxvfunfacts. htm.
    • (2010) Super bowl xxxv fun facts
    • Duncan, A.1
  • 13
    • 10044238664 scopus 로고    scopus 로고
    • Mining frequent patterns in data streams at multiple time granularities
    • Kargupta H, Joshi A, Sivakumar K, Yesha Y (eds), AAAI/MIT
    • Giannella C, Han J, Pei J, Yan X, Yu P (2003) Mining frequent patterns in data streams at multiple time granularities. In: Kargupta H, Joshi A, Sivakumar K, Yesha Y (eds) Next generation data mining. AAAI/MIT.
    • (2003) Next generation data mining
    • Giannella, C.1    Han, J.2    Pei, J.3    Yan, X.4    Yu, P.5
  • 14
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: SIGMOD, pp 1-12.
    • (2000) SIGMOD , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 15
    • 0032091573 scopus 로고    scopus 로고
    • Efficiently mining long patterns from databases
    • June 2-4, Seattle
    • Bayardo RJ Jr (1998) Efficiently mining long patterns from databases. In: SIGMOD, June 2-4, Seattle, pp 85-93.
    • (1998) SIGMOD , pp. 85-93
    • Bayardo Jr., R.J.1
  • 16
    • 41149168274 scopus 로고    scopus 로고
    • On mining general temporal association rules in a publication database
    • San Jose
    • Lee C-H, Lin C-R, Chen M-S (2001) On mining general temporal association rules in a publication database. In: ICDM 29 Nov-2 Dec 2001, San Jose, pp 337-344.
    • (2001) ICDM 29 Nov-2 Dec 2001 , pp. 337-344
    • Lee, C.-H.1    Lin, C.-R.2    Chen, M.-S.3
  • 17
    • 0037293307 scopus 로고    scopus 로고
    • Discovering calendar-based temporal association rules
    • Li Y, Ning P, Wang XS, Jajodia S (2003) Discovering calendar-based temporal association rules. Data Knowl Eng 44(2): 193-218.
    • (2003) Data Knowl Eng , vol.44 , Issue.2 , pp. 193-218
    • Li, Y.1    Ning, P.2    Wang, X.S.3    Jajodia, S.4
  • 18
    • 35248836871 scopus 로고    scopus 로고
    • Maintenance of maximal frequent itemsets in large databases
    • Lian W, Cheung DW, Yiu SM (2007) Maintenance of maximal frequent itemsets in large databases. In SAC, pp 388-392.
    • (2007) SAC , pp. 388-392
    • Lian, W.1    Cheung, D.W.2    Yiu, S.M.3
  • 19
    • 31344457479 scopus 로고    scopus 로고
    • Fast and memory efficient mining of frequent closed itemsets
    • Lucchese C, Orlando S, Perego R (2006) Fast and memory efficient mining of frequent closed itemsets. IEEE Trans Knowl Data Eng 18(1): 21-36.
    • (2006) IEEE Trans Knowl Data Eng , vol.18 , Issue.1 , pp. 21-36
    • Lucchese, C.1    Orlando, S.2    Perego, R.3
  • 22
  • 23
    • 56749150055 scopus 로고    scopus 로고
    • A clustering-based approach for discovering interesting places in trajectories
    • Palma AT, Bogorny V, Kuijpers B, Alvares LO (2008) A clustering-based approach for discovering interesting places in trajectories. In: SAC, pp 863-868.
    • (2008) SAC , pp. 863-868
    • Palma, A.T.1    Bogorny, V.2    Kuijpers, B.3    Alvares, L.O.4
  • 24
    • 33847113992 scopus 로고    scopus 로고
    • Association rules mining using heavy itemsets
    • Palshikar GK, Kale MS, Apte MM (2007) Association rules mining using heavy itemsets. Data Knowl Eng 61(1): 93-113.
    • (2007) Data Knowl Eng , vol.61 , Issue.1 , pp. 93-113
    • Palshikar, G.K.1    Kale, M.S.2    Apte, M.M.3
  • 25
    • 84911977993 scopus 로고    scopus 로고
    • Discovering frequent closed itemsets for association rules
    • Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed itemsets for association rules. In: ICDT, pp 398-416.
    • (1999) ICDT , pp. 398-416
    • Pasquier, N.1    Bastide, Y.2    Taouil, R.3    Lakhal, L.4
  • 26
    • 0036649978 scopus 로고    scopus 로고
    • A survey of temporal knowledge discovery paradigms and methods
    • Roddick JF, Spiliopoulou M (2002) A survey of temporal knowledge discovery paradigms and methods. IEEE TKDE 14(4): 750-767.
    • (2002) IEEE TKDE , vol.14 , Issue.4 , pp. 750-767
    • Roddick, J.F.1    Spiliopoulou, M.2
  • 27
    • 51549113449 scopus 로고    scopus 로고
    • Time aware mining of itemsets
    • Saleh B, Masseglia F (2008) Time aware mining of itemsets. In: TIME, pp 93-97.
    • (2008) TIME , pp. 93-97
    • Saleh, B.1    Masseglia, F.2
  • 28
    • 85012188661 scopus 로고    scopus 로고
    • A regression-based temporal pattern mining scheme for data streams
    • Teng W-G, Chen M-S, Yu PS (2003) A regression-based temporal pattern mining scheme for data streams. In: VLDB, pp 93-104.
    • (2003) VLDB , pp. 93-104
    • Teng, W.-G.1    Chen, M.-S.2    Yu, P.S.3
  • 29
    • 0002663971 scopus 로고    scopus 로고
    • Sampling large databases for association rules
    • 3-6 Sep, Mumbai (Bombay)
    • Toivonen H (1996) Sampling large databases for association rules. In: VLDB, 3-6 Sep, Mumbai (Bombay), pp 134-145.
    • (1996) VLDB , pp. 134-145
    • Toivonen, H.1
  • 30
    • 77952363125 scopus 로고    scopus 로고
    • Closet+: searching for the best strategies for mining frequent closed itemsets
    • Washington, 24-27 Aug
    • Wang J, Han J, Pei J (2003) Closet+: searching for the best strategies for mining frequent closed itemsets. In: KDD, Washington, 24-27 Aug, pp 236-245.
    • (2003) KDD , pp. 236-245
    • Wang, J.1    Han, J.2    Pei, J.3
  • 31
    • 67349254647 scopus 로고    scopus 로고
    • Characterizing pattern preserving clustering
    • Xiong H, Steinbach M, Ruslim A, Kumar V (2009) Characterizing pattern preserving clustering. Knowl Inf Syst 19(3): 311-336.
    • (2009) Knowl Inf Syst , vol.19 , Issue.3 , pp. 311-336
    • Xiong, H.1    Steinbach, M.2    Ruslim, A.3    Kumar, V.4
  • 32
    • 26944503464 scopus 로고    scopus 로고
    • Mining time-profiled associations: an extended abstract
    • Hanoi, 18-20 May
    • Yoo JS, Zhang P, Shekhar S (2005) Mining time-profiled associations: an extended abstract. In: PAKDD, Hanoi, 18-20 May, pp 136-142.
    • (2005) PAKDD , pp. 136-142
    • Yoo, J.S.1    Zhang, P.2    Shekhar, S.3
  • 33
    • 43249119614 scopus 로고    scopus 로고
    • Computing the minimum-support for mining frequent patterns
    • Zhang S, Wu X, Zhang C, Lu J (2008) Computing the minimum-support for mining frequent patterns. Knowl Inf Syst 15(2): 233-257.
    • (2008) Knowl Inf Syst , vol.15 , Issue.2 , pp. 233-257
    • Zhang, S.1    Wu, X.2    Zhang, C.3    Lu, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.