메뉴 건너뛰기




Volumn 6, Issue PART 1, 2006, Pages 108-113

Multivariate statistical process monitoring using multi-scale kernel principal component analysis

Author keywords

Fault diagnosis; Kernel function; Nonlinear principal component analysis; Similarity factor; Wavelet analysis

Indexed keywords

FACTOR ANALYSIS; FAILURE ANALYSIS; FAULT DETECTION; MATHEMATICAL TRANSFORMATIONS; MULTIVARIANT ANALYSIS; PLANT MANAGEMENT; PROCESS MONITORING; STATISTICAL PROCESS CONTROL; WAVELET ANALYSIS;

EID: 79961141300     PISSN: 14746670     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.3182/20060829-4-cn-2909.00017     Document Type: Conference Paper
Times cited : (19)

References (16)
  • 1
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with applications to multivariate statistical process monitoring
    • Bakshi, B.R. (1998). Multiscale PCA with applications to multivariate statistical process monitoring. AICHE Journal. 44(7), 1596-1610.
    • (1998) AICHE Journal , vol.44 , Issue.7 , pp. 1596-1610
    • Bakshi, B.R.1
  • 3
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component Analysis based on principal component curves and neural networks
    • Dong, D., and T.J. McAvoy(1996). Nonlinear principal component Analysis based on principal component curves and neural networks. Computers and Chemical Engineering, 20(1), 65-78
    • (1996) Computers and Chemical Engineering , vol.20 , Issue.1 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 4
    • 0034661260 scopus 로고    scopus 로고
    • Advanced process monitoring using an on-line non-linear multiscale principal component analysis methodology
    • DOI 10.1016/S0098-1354(00)00417-8, PII S0098135400004178
    • Fourie, S.H., and P. Vaal(2000). Advanced process monitoring using an nonlinear multiscale principal component analysis methodology. Computers and Chemical Engineering, 24(2-7), 755-760. (Pubitemid 30608312)
    • (2000) Computers and Chemical Engineering , vol.24 , Issue.2-7 , pp. 755-760
    • Fourie, S.H.1    De Vaal, P.2
  • 5
    • 0033611749 scopus 로고    scopus 로고
    • Non-linear principal components analysis using genetic programming
    • DOI 10.1016/S0098-1354(98)00284-1, PII S0098135498002841
    • Hiden, H.G., M.J. Willis, M.T. Tham, and G.A. Montague(1999). Non-linear principal components analysis using genetic programming. Computers and Chemical Engineering, 23(3), 413-425. (Pubitemid 29179698)
    • (1999) Computers and Chemical Engineering , vol.23 , Issue.3 , pp. 413-425
    • Hiden, H.G.1    Willis, M.J.2    Tham, M.T.3    Montague, G.A.4
  • 6
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Krammer, M.A.(1991). Nonlinear principal component analysis using autoassociative neural networks. AICHE Journal, 37(2), 233-243.
    • (1991) AICHE Journal , vol.37 , Issue.2 , pp. 233-243
    • Krammer, M.A.1
  • 9
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • DOI 10.1016/j.ces.2003.09.012
    • Lee, J.-M., C.K. Yoo, S.W. Choi, P.A. Vanrolleghem, and I.-B. Lee(2004). Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science., 59(1), 223-234. (Pubitemid 38034007)
    • (2004) Chemical Engineering Science , vol.59 , Issue.1 , pp. 223-234
    • Lee, J.-M.1    Yoo, C.K.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.-B.5
  • 10
    • 0034661266 scopus 로고    scopus 로고
    • Nonlinear dynamic principal component analysis for on-line process monitoring and diagnosis
    • DOI 10.1016/S0098-1354(00)00433-6, PII S0098135400004336
    • Lin, W.L., Y. Qian, and X.X. Li(2000). Nonlinear dynamic principal component analysis for online process monitoring and diagnosis. Computers and Chemical Engineering., 24(2-7), 423-429. (Pubitemid 30608262)
    • (2000) Computers and Chemical Engineering , vol.24 , Issue.2-7 , pp. 423-429
    • Lin, W.1    Qian, Y.2    Li, X.3
  • 11
    • 0041355444 scopus 로고    scopus 로고
    • Combination method of principal component and wavelet analysis for multivariate process monitoring and fault diagnosis
    • Lu, N.Y., F.L. Wang., and F.R. Gao(2003). Combination method of principal component and wavelet analysis for multivariate process monitoring and fault diagnosis. Ind. Eng. Chem. Res., 42, 4198-4207
    • (2003) Ind. Eng. Chem. Res. , vol.42 , pp. 4198-4207
    • Lu, N.Y.1    Wang, F.L.2    Gao, F.R.3
  • 12
    • 0037106519 scopus 로고    scopus 로고
    • Multivariate process monitoring and fault diagnosis by multi-scale PCA
    • Misra, M., H. Yue, S.J. Qin, and C. Ling(2002). Multivariate process monitoring and fault diagnosis by multi-scale PCA. Computers and Chemical Engineering. 26(9), 1281-1293.
    • (2002) Computers and Chemical Engineering , vol.26 , Issue.9 , pp. 1281-1293
    • Misra, M.1    Yue, H.2    Qin, S.J.3    Ling, C.4
  • 13
    • 0031208457 scopus 로고    scopus 로고
    • Statistical monitoring of multivariate dynamic processes with state-space models
    • Negiz, A., and A. Cinar .(1997). Statistical monitoring of multivariate dynamic processes with state-space models. AIChE Journal, 43(8), 2002-2020.
    • (1997) AIChE Journal , vol.43 , Issue.8 , pp. 2002-2020
    • Negiz, A.1    Cinar, A.2
  • 14
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • Schölkopf, B., A.J. Smola , and K. Muller(1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural computation, 10(5), 1299-1319. (Pubitemid 128463674)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 15
    • 0032853906 scopus 로고    scopus 로고
    • Wavelets and non-linear principal components analysis for process monitoring
    • DOI 10.1016/S0967-0661(99)00039-8, PII S0967066199000398
    • Shao, R., F. Jia, E.B. Martin, and A. J. Morris(1999). Wavelets and non-linear principal components analysis for process monitoring, Control Engineering Practice,7(7), 865-879 (Pubitemid 29432907)
    • (1999) Control Engineering Practice , vol.7 , Issue.7 , pp. 865-879
    • Shao, R.1    Jia, F.2    Martin, E.B.3    Morris, A.J.4
  • 16
    • 0036804076 scopus 로고    scopus 로고
    • Pattern matching in historical batch data using PCA
    • DOI 10.1109/MCS.2002.1035217
    • Singhal, A., and D.E. Seborg (2002). Pattern matching in historical batch data using PCA. IEEE control systems magazine, 22(5), 53-63 (Pubitemid 35298309)
    • (2002) IEEE Control Systems Magazine , vol.22 , Issue.5 , pp. 53-63
    • Singhal, A.1    Seborg, D.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.